Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatol Int ; 17(4): 850-859, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37067675

ABSTRACT

BACKGROUND AND AIMS: Liver transplantation (LT) is the primary curative option for cirrhotic patients with early-stage hepatocellular carcinoma (HCC). However, tumor recurrence occurs in 15-20% of cases with unfavorable prognosis. We have developed a library of T cell receptors (TCRs) specific for different hepatitis B virus (HBV) antigens, restricted by different molecules of human leucocyte antigen (HLA)-class I, to redirect T cells against HBV antigens (Banu in Sci Rep 4:4166, 2014). We further demonstrated that these transiently functional T cells specific for HBV obtained through messenger RNA (mRNA) electroporation can eliminate HCC cells expressing HBV antigens in vitro and in vivo (Kah in J Clin Invest 127:3177-3188, 2017). A phase I clinical trial for patients with HCC recurrence post-liver transplant was conducted to assess the safety, tolerability, and anti-tumor efficacy of transiently functional HBV-TCR T cells. Here, we report the clinical findings with regard to the safety and anti-tumor efficacy of mRNA electroporated HBV-specific TCR-T cells. (ClinicalTrials.gov identifier: NCT02719782). PATIENTS AND METHODS: A total of six patients with HBV-positive recurrent HCC post-liver transplant and HLA-matched to TCR targeting hepatitis B surface antigen (HBsAg) or hepatitis B core antigen (HBcAg) (HLA-A*02:01/HBsAg, HLA-A*11:01/HBcAg, HLA-B*58:01/HBsAg or HLA-C*08:01/HBsAg) were enrolled in this study. The primary objective was to assess the safety of short-lived mRNA electroporated HBV-TCR T cells based on the incidence and severity of the adverse event (AE) graded per National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE), Version 4.0. The secondary objective was to determine the effectiveness of HBV-TCR T cells as per RECIST 1.1 criteria. Patients were followed up for survival for 2 years post-end of treatment. RESULTS: The median age of the six patients was 35.5 years (range: 28-47). The median number of HBV-TCR T cell infusions administered was 6.5 (range: 4-12). The treatment-related AE included grade 1 pyrexia. This study reported no cytokine release syndrome nor neurotoxicity. One patient remained alive and five were deceased at the time of the data cutoff (30 April 2020). CONCLUSION: This study has demonstrated that multiple infusions of mRNA electroporated HBV-specific TCR T cells were well-tolerated in patients with HBV-positive recurrent HCC post-liver transplant.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Liver Transplantation , Humans , Adult , Middle Aged , Hepatitis B virus/genetics , Hepatitis B Surface Antigens , Liver Neoplasms/pathology , Hepatitis B Core Antigens/therapeutic use , RNA, Messenger , Neoplasm Recurrence, Local/therapy , Neoplasm Recurrence, Local/complications , Receptors, Antigen, T-Cell/genetics , Hepatitis B/complications
2.
Hepatol Int ; 15(6): 1402-1412, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34850325

ABSTRACT

BACKGROUND & AIMS: Immunotherapy with hepatitis B virus (HBV)-specific TCR redirected T (HBV-TCR-T) cells in HBV-related hepatocellular carcinoma (HBV-HCC) patients after liver transplantation was reported to be safe and had potential therapeutic efficacy. We aim to investigate the safety of HBV-TCR-T-cell immunotherapy in advanced HBV-HCC patients who had not met the criteria for liver transplantation. METHODS: We enrolled eight patients with advanced HBV-HCC and adoptively transferred short-lived autologous T cells expressing HBV-specific TCR to perform an open-label, phase 1 dose-escalation study (NCT03899415). The primary endpoint was to evaluate the safety of HBV-TCR-T-cell therapy according to National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.03) during the dose-escalation process. The secondary endpoint was to assess the efficacy of HBV-TCR-T-cell therapy by evaluating the anti-tumor responses using RECIST criteria (version 1.1) and the overall survival. RESULTS: Adverse events were observed in two participants among the 8 patients enrolled. Only one patient experienced a Grade 3 liver-related adverse event after receiving a dose of 1 × 105 HBV-TCR-T cells/kg, then normalized without interventions with immunosuppressive agents. Among the patients, one achieved a partial response lasting for 27.7 months. Importantly, most of the patients exhibited a reduction or stabilization of circulating HBsAg and HBV DNA levels after HBV-TCR-T-cell infusion, indicating the on-target effects. CONCLUSIONS: The adoptive transfer of HBV-TCR-T cells into advanced HBV-HCC patients were generally safe and well-tolerated. Observations of clinical efficacy support the continued development and eventual application of this treatment strategy in patients with advanced HBV-related HCC. CLINICAL TRIALS REGISTRATION: This study was registered at ClinicalTrials.gov (NCT03899415).


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/therapy , Hepatitis B virus , Humans , Immunotherapy , Liver Neoplasms/therapy , Receptors, Antigen, T-Cell , T-Lymphocytes
3.
Biochem Biophys Res Commun ; 433(1): 40-6, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23454121

ABSTRACT

Thioredoxin interacting protein (TXNIP), first identified as an inhibitor of thioredoxin, is also a tumor suppressor as well as an inhibitor of lipogenesis. TXNIP is known to be transcriptionally regulated in response to nutrients such as glucose and stress signals, including endoplasmic reticulum stress and lactic acidosis. In this study, we characterized the transcriptional regulation of TXNIP in response to hypoxia. Using a hepatocellular carcinoma cell line, we have found that TXNIP mRNA expression is regulated in a biphasic manner in hypoxia whereby TXNIP expression showed an initial rapid decrease, followed by an increase under prolonged hypoxia. Interestingly, we have shown that TXNIP induction in prolonged hypoxia is independent of the Hypoxia-Inducible Factor (HIF) transcription factor. The effect of hypoxia on TXNIP expression is mediated via the inhibition of the 4E-BP1/eIF4E axis of mechanistic target of rapamycin (mTORC1). Thus, we found that inhibiting mTORC1-dependent 4E-BP1 phosphorylation mimics the effect of hypoxia on TXNIP expression. Furthermore, overexpressing eIF4E prevents the induction of TXNIP in hypoxia. Our results suggest that mTORC1 may be an important regulator of hypoxia-dependent gene expression.


Subject(s)
Carrier Proteins/genetics , Cell Hypoxia/genetics , Cell Hypoxia/physiology , TOR Serine-Threonine Kinases/metabolism , Thioredoxins/genetics , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/antagonists & inhibitors , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Base Sequence , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/biosynthesis , Cell Cycle Proteins , Enzyme Inhibitors/pharmacology , Eukaryotic Initiation Factors , Gene Expression Regulation/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes , NIH 3T3 Cells , Phosphoproteins/antagonists & inhibitors , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Thioredoxins/biosynthesis , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...