Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 5(7): 5490-8, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21702483

ABSTRACT

We report on the first observation of an anomalous temperature-dependent resistance behavior in coupled Bernal and rhombohedral stacking graphene. At low-temperature regime (<50 K) the temperature-dependent resistance exhibits a drop while at high-temperature regions (>250 K), the resistance increases. In the transition region (50-250 K) an oscillatory resistance behavior was observed. This property is not present in any layered graphene structures other than five-layer. We propose that the temperature-dependent resistance behavior is governed by the interplay of the Coulomb and short-range scatterings. The origin of the oscillatory resistance behavior is the ABCAB and ABABA stacking configurations, which induces tunable bandgap in the five-layer graphene. The obtained results also indicate that a perpendicular magnetic field opens an excitonic gap because of the Coulomb interaction-driven electronic instabilities, and the bandgap of the five-layer graphene is thermally activated. Potentially, the observed phenomenon provides important transport information to the design of few-layer graphene transistors that can be manipulated by a magnetic field.

2.
ACS Nano ; 4(12): 7087-92, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21047066

ABSTRACT

The perpendicular magnetic field dependence of the longitudinal resistance in trilayer graphene at various temperatures has been systematically studied. For a fixed magnetic field, the trilayer graphene displays an intrinsic semiconductor behavior over the temperature range of 5-340 K. This is attributed to the parabolic band structure of trilayer graphene, where the Coulomb scattering is a strong function of temperature. The dependence of resistance on the magnetic field can be explained by the splitting of Landau levels (LLs). Our results reveal that the energy gap in the trilayer graphene is thermally activated and increases with √B.

SELECTION OF CITATIONS
SEARCH DETAIL
...