Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 3: 88, 2012.
Article in English | MEDLINE | ID: mdl-22566967

ABSTRACT

In order to metastasize, cancer cells must undergo phenotypic transition from an anchorage-dependent form to a motile form via a process referred to as epithelial to mesenchymal transition. It is currently unclear whether metastatic cells emerge late during tumor progression by successive accumulation of mutations, or whether they derive from distinct cell populations already present during the early stages of tumorigenesis. Similarly, the selective pressures that drive metastasis are poorly understood. Selection of cancer cells with increased proliferative capacity and enhanced survival characteristics may explain how some transformations promote a metastatic phenotype. However, it is difficult to explain how cancer cells that disseminate can emerge due to such selective pressure, since these cells usually remain dormant for prolonged periods of time. In the current study, we have used in silico modeling and simulation to investigate the hypothesis that mesenchymal-like cancer cells evolve during the early stages of primary tumor development, and that these cells exhibit survival and proliferative advantages within the tumor microenvironment. In an agent-based tumor microenvironment model, cancer cell agents with distinct sets of attributes governing nutrient consumption, proliferation, apoptosis, random motility, and cell adhesion were allowed to compete for space and nutrients. These simulation data indicated that mesenchymal-like cancer cells displaying high motility and low adhesion proliferate more rapidly and display a survival advantage over epithelial-like cancer cells. Furthermore, the presence of mesenchymal-like cells within the primary tumor influences the macroscopic properties, emergent morphology, and growth rate of tumors.

2.
Immunol Res ; 53(1-3): 251-65, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22528121

ABSTRACT

Immunological studies frequently analyze individual components (e.g., signaling pathways) of immune systems in a reductionist manner. In contrast, systems immunology aims to give a synthetic understanding of how these components function together as a whole. While immunological research involves in vivo and in vitro experiments, systems immunology research can also be conducted in silico. With an increasing interest in systems-level studies spawned by high-throughput technologies, many immunologists are looking forward to insights provided by computational modeling and simulation. However, modeling and simulation research has mainly been conducted in computational fields, and therefore, little material is available or accessible to immunologists today. This survey is an attempt at bridging the gap between immunologists and systems immunology modeling and simulation. Modeling and simulation refer to building and executing an in silico replica of an immune system. Models are specified within a mathematical or algorithmic framework called formalism and then implemented using software tools. A plethora of modeling formalisms and software tools are reported in the literature for systems immunology. However, it is difficult for a new entrant to the field to know which of these would be suitable for modeling an immunological application at hand. This paper covers three aspects. First, it introduces the field of system immunology emphasizing on the modeling and simulation components. Second, it gives an overview of the principal modeling formalisms, each of which is illustrated with salient applications in immunological research. This overview of formalisms and applications is conducted not only to illustrate their power but also to serve as a reference to assist immunologists in choosing the best formalism for the problem at hand. Third, it lists major software tools, which can be used to practically implement models in these formalisms. Combined, these aspects can help immunologists to start experimenting with in silico models. Finally, future research directions are discussed. Particularly, we identify integrative frameworks to facilitate the coupling of different modeling formalisms and modeling the adaptation properties through evolution of immune systems as the next key research efforts necessary to further develop the multidisciplinary field of systems immunology.


Subject(s)
Allergy and Immunology , Computer Simulation , Systems Biology , Animals , Biological Evolution , Humans , Models, Immunological , Software
3.
J R Soc Interface ; 7 Suppl 3: S351-63, 2010 Jun 06.
Article in English | MEDLINE | ID: mdl-20356873

ABSTRACT

The epithelium of the intestinal crypt is a dynamic tissue undergoing constant regeneration through cell growth, cell division, cell differentiation and apoptosis. How the epithelial cells maintain correct positioning and how they migrate in a directed and collective fashion are still not well understood. In this paper, we developed a computational model to elucidate these processes. We show that differential adhesion between epithelial cells, caused by the differential activation of EphB receptors and ephrinB ligands along the crypt axis, is necessary to regulate cell positioning. Differential cell adhesion has been proposed previously to guide cell movement and cause cell sorting in biological tissues. The proliferative cells and the differentiated post-mitotic cells do not intermingle as long as differential adhesion is maintained. We also show that, without differential adhesion, Paneth cells are randomly distributed throughout the intestinal crypt. In addition, our model suggests that, with differential adhesion, cells migrate more rapidly as they approach the top of the intestinal crypt. Finally, by calculating the spatial correlation function of the cell velocities, we observe that differential adhesion results in the differentiated epithelial cells moving in a coordinated manner, where correlated velocities are maintained at large distances, suggesting that differential adhesion regulates coordinated migration of cells in tissues.


Subject(s)
Cell Adhesion/physiology , Cell Movement/physiology , Computational Biology/methods , Intestinal Mucosa/cytology , Models, Biological , Receptors, Eph Family/metabolism , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...