Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(2): 101560, 2022 02.
Article in English | MEDLINE | ID: mdl-34990713

ABSTRACT

Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein's role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.


Subject(s)
Alginates , Periplasm , Polysaccharide-Lyases , Pseudomonas aeruginosa , Alginates/chemistry , Alginates/metabolism , Bacterial Proteins/metabolism , Glucuronic Acid/chemistry , Glucuronic Acid/genetics , Hexuronic Acids/chemistry , Homeostasis , Humans , Periplasm/enzymology , Periplasm/metabolism , Polymers/metabolism , Polysaccharide-Lyases/metabolism , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism
2.
Beilstein J Org Chem ; 9: 1419-25, 2013.
Article in English | MEDLINE | ID: mdl-23946837

ABSTRACT

Dipolar addition of cyclic azomethine imines with cyclic vinyl sulfones gave rise to functionalized tricycles that exhibited fluxional behavior in solution at room temperature. The scope of the synthetic methodology was explored, and the origin of the fluxional behavior was probed by NMR methods together with DFT calculations. This behavior was ultimately attributed to stereochemical inversion at one of two nitrogen centers embedded in the tricyclic framework. Two tetracycles were also synthesized, and the degree of signal-broadening in the NMR spectra was found to depend on the presence of substitution next to the inverting nitrogen center.

SELECTION OF CITATIONS
SEARCH DETAIL
...