Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
1.
Heliyon ; 10(8): e29572, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38699748

ABSTRACT

Sepsis is a life-threatening illness caused by the dysregulated host response to infection. Nevertheless, our current knowledge of the microbial landscape in the blood of septic patients is still limited. Next-generation sequencing (NGS) is a sensitive method to quantitatively characterize microbiomes at various sites of the human body. In this study, we analyzed the blood microbial DNA of 22 adult patients with sepsis and 3 healthy subjects. The presence of non-human DNA was identified in both healthy and septic subjects. Septic patients had a markedly altered microbial DNA profile compared to healthy subjects over α- and ß-diversity. Unexpectedly, the patients could be further divided into two subgroups (C1 and C2) based on ß-diversity analysis. C1 patients showed much higher bacteria, viruses, fungi, and archaea abundance, and a higher level of α-diversity (Chao1, Observed and Shannon index) than both C2 patients and healthy subjects. The most striking difference was seen in the case of Streptomyces violaceusniger, Phenylobacterium sp. HYN0004, Caulobacter flavus, Streptomyces sp. 11-1-2, and Phenylobacterium zucineum, the abundance of which was the highest in the C1 group. Notably, C1 patients had a significantly poorer outcome than C2 patients. Moreover, by analyzing the patterns of microbe-microbe interactions in healthy and septic subjects, we revealed that C1 and C2 patients exhibited distinct co-occurrence and co-exclusion relationships. Together, our study uncovered two distinct microbial signatures in the blood of septic patients. Compositional and ecological analysis of blood microbial DNA may thus be useful in predicting mortality of septic patients.

2.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712094

ABSTRACT

Our skin provides a protective barrier that shields us from our environment. Barrier function is typically associated with interfollicular epidermis; however, whether hair follicles influence this process remains unclear. Here, we utilize a potent genetic tool to probe barrier function by conditionally ablating a quintessential epidermal barrier gene, Abca12, which is mutated in the most severe skin barrier disease, harlequin ichthyosis. With this tool, we deduced 4 ways by which hair follicles modulate skin barrier function. First, the upper hair follicle (uHF) forms a functioning barrier. Second, barrier disruption in the uHF elicits non-cell autonomous responses in the epidermis. Third, deleting Abca12 in the uHF impairs desquamation and blocks sebum release. Finally, barrier perturbation causes uHF cells to move into the epidermis. Neutralizing Il17a, whose expression is enriched in the uHF, partially alleviated some disease phenotypes. Altogether, our findings implicate hair follicles as multi-faceted regulators of skin barrier function.

3.
Gut Microbes ; 16(1): 2356279, 2024.
Article in English | MEDLINE | ID: mdl-38778521

ABSTRACT

Repeated exposure to antibiotics and changes in the diet and environment shift the gut microbial diversity and composition, making the host susceptible to pathogenic infection. The emergence and ongoing spread of AMR pathogens is a challenging public health issue. Recent evidence showed that probiotics and prebiotics may play a role in decolonizing drug-resistant pathogens by enhancing the colonization resistance in the gut. This review aims to analyze available evidence from human-controlled trials to determine the effect size of probiotic interventions in decolonizing AMR pathogenic bacteria from the gut. We further studied the effects of prebiotics in human and animal studies. PubMed, Embase, Web of Science, Scopus, and CINAHL were used to collect articles. The random-effects model meta-analysis was used to pool the data. GRADE Pro and Cochrane collaboration tools were used to assess the bias and quality of evidence. Out of 1395 citations, 29 RCTs were eligible, involving 2871 subjects who underwent either probiotics or placebo treatment to decolonize AMR pathogens. The persistence of pathogenic bacteria after treatment was 22%(probiotics) and 30.8%(placebo). The pooled odds ratio was 0.59(95% CI:0.43-0.81), favoring probiotics with moderate certainty (p = 0.0001) and low heterogeneity (I2 = 49.2%, p = 0.0001). The funnel plot showed no asymmetry in the study distribution (Kendall'sTau = -1.06, p = 0.445). In subgroup, C. difficile showed the highest decolonization (82.4%) in probiotics group. Lactobacillus-based probiotics and Saccharomyces boulardii decolonize 71% and 77% of pathogens effectively. The types of probiotics (p < 0.018) and pathogens (p < 0.02) significantly moderate the outcome of decolonization, whereas the dosages and regions of the studies were insignificant (p < 0.05). Prebiotics reduced the pathogens from 30% to 80% of initial challenges. Moderate certainty of evidence suggests that probiotics and prebiotics may decolonize pathogens through modulation of gut diversity. However, more clinical outcomes are required on particular strains to confirm the decolonization of the pathogens. Protocol registration: PROSPERO (ID = CRD42021276045).


Subject(s)
Bacteria , Gastrointestinal Microbiome , Prebiotics , Probiotics , Probiotics/administration & dosage , Probiotics/therapeutic use , Probiotics/pharmacology , Humans , Prebiotics/administration & dosage , Gastrointestinal Microbiome/drug effects , Bacteria/classification , Bacteria/isolation & purification , Animals , Treatment Outcome , Anti-Bacterial Agents/pharmacology , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Gastrointestinal Tract/microbiology
4.
Cancer Res ; 84(8): 1195-1198, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38616656

ABSTRACT

The 15th annual Frontiers in Cancer Science (FCS) conference gathered scientific experts who shared the latest research converging upon several themes of cancer biology. These themes included the dysregulation of metabolism, cell death, and other signaling processes in cancer cells; using patient "omics" datasets and single-cell and spatial approaches to investigate heterogeneity, understand therapy resistance, and identify targets; innovative strategies for inhibiting tumors, including rational drug combinations and improved drug delivery mechanisms; and advances in models that can facilitate screening for cancer vulnerabilities and drug testing. We hope the insights from this meeting will stimulate further progress in the field.


Subject(s)
Neoplasms , Research , Humans , Cell Death , Drug Delivery Systems , Neoplasms/therapy
5.
Cell Host Microbe ; 32(3): 291-293, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38484705

ABSTRACT

Gastric cancer is a deadly global malignancy caused by Helicobacter pylori infection. In a recent issue of Cell, Fu et al. identify Streptococcus anginosus, a bacterium normally residing in the oral cavity, as an additional contributor to gastric carcinogenesis.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Stomach Neoplasms/microbiology , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Mouth/microbiology
6.
J Gastroenterol Hepatol ; 39(5): 826-835, 2024 May.
Article in English | MEDLINE | ID: mdl-38303116

ABSTRACT

The role of appendectomy in the pathogenesis of colorectal cancer (CRC) is a recent topic of contention. Given that appendectomy remains one of the most commonly performed operations and a first-line management strategy of acute appendicitis, it is inherently crucial to elucidate the association between prior appendectomy and subsequent development of CRC, as there may be long-term health repercussions. In this review, we summarize the data behind the relationship of CRC in post-appendectomy patients, discuss the role of the microbiome in relation to appendectomy and CRC pathogenesis, and provide an appraisal of our current understanding of the function of the appendix. We seek to piece together the current landscape surrounding the microbiome and immunological changes in the colon post-appendectomy and suggest a direction for future research involving molecular, transcriptomic, and immunologic analysis to complement our current understanding of the alterations in gut microbiome.


Subject(s)
Appendectomy , Appendix , Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/etiology , Appendix/microbiology , Appendectomy/adverse effects , Appendicitis/microbiology , Appendicitis/surgery , Colon/microbiology , Postoperative Complications/microbiology , Postoperative Complications/etiology
7.
Chem Sci ; 15(5): 1846-1859, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38303944

ABSTRACT

Peptidoglycan is an essential exoskeletal polymer across all bacteria. Gut microbiota-derived peptidoglycan fragments (PGNs) are increasingly recognized as key effector molecules that impact host biology. However, the current peptidoglycan analysis workflow relies on laborious manual identification from tandem mass spectrometry (MS/MS) data, impeding the discovery of novel bioactive PGNs in the gut microbiota. In this work, we built a computational tool PGN_MS2 that reliably simulates MS/MS spectra of PGNs and integrated it into the user-defined MS library of in silico PGN search space, facilitating automated PGN identification. Empowered by PGN_MS2, we comprehensively profiled gut bacterial peptidoglycan composition. Strikingly, the probiotic Bifidobacterium spp. manifests an abundant amount of the 1,6-anhydro-MurNAc moiety that is distinct from Gram-positive bacteria. In addition to biochemical characterization of three putative lytic transglycosylases (LTs) that are responsible for anhydro-PGN production in Bifidobacterium, we established that these 1,6-anhydro-PGNs exhibit potent anti-inflammatory activity in vitro, offering novel insights into Bifidobacterium-derived PGNs as molecular signals in gut microbiota-host crosstalk.

8.
Nat Commun ; 15(1): 669, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253620

ABSTRACT

The role of N6-methyladenosine (m6A) modification of host mRNA during bacterial infection is unclear. Here, we show that Helicobacter pylori infection upregulates host m6A methylases and increases m6A levels in gastric epithelial cells. Reducing m6A methylase activity via hemizygotic deletion of methylase-encoding gene Mettl3 in mice, or via small interfering RNAs targeting m6A methylases, enhances H. pylori colonization. We identify LOX-1 mRNA as a key m6A-regulated target during H. pylori infection. m6A modification destabilizes LOX-1 mRNA and reduces LOX-1 protein levels. LOX-1 acts as a membrane receptor for H. pylori catalase and contributes to bacterial adhesion. Pharmacological inhibition of LOX-1, or genetic ablation of Lox-1, reduces H. pylori colonization. Moreover, deletion of the bacterial catalase gene decreases adhesion of H. pylori to human gastric sections. Our results indicate that m6A modification of host LOX-1 mRNA contributes to protection against H. pylori infection by downregulating LOX-1 and thus reducing H. pylori adhesion.


Subject(s)
Adenosine , Helicobacter Infections , Helicobacter pylori , Scavenger Receptors, Class E , Animals , Humans , Mice , Adenosine/analogs & derivatives , Catalase/metabolism , Helicobacter Infections/metabolism , Helicobacter pylori/metabolism , RNA, Messenger/genetics , Scavenger Receptors, Class E/genetics
10.
Clin Gastroenterol Hepatol ; 22(3): 611-620.e12, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37734581

ABSTRACT

BACKGROUND AND AIMS: Prospective long-term real-world safety data after fecal microbiota transplantation (FMT) remain limited. We reported long-term outcomes of FMT from a population-based FMT registry in Hong Kong. METHODS: We recruited patients undergoing FMT for recurrent Clostridioides difficile infection (CDI) and non-CDI indications from clinical trials, from June 2013 to April 2022 in Hong Kong. We captured data on demographics, FMT indications and procedures, clinical outcomes and short- to long-term safety. New medical diagnoses were obtained from electronic medical records and independently adjudicated by clinicians. Long-term safety in patients with recurrent CDI was compared with a control group treated with antibiotics. RESULTS: Overall, 123 subjects (median age 53 years, range 13-90 years; 52.0% male) underwent 510 FMTs and were prospectively followed up for a median of 30.3 (range, 1-57.9) months. The most common indication for FMT was type 2 diabetes mellitus. The most common short-term adverse events within 1 month of FMT included diarrhea and abdominal pain. At long-term follow-up beyond 12 months, 16 patients reported 21 new-onset medical conditions confirmed by electronic medical records. All were adjudicated to be unlikely to be related to FMT. There was no new case of inflammatory bowel disease, irritable bowel syndrome, allergy, diabetes mellitus, or psychiatric disorder. In a subgroup of patients with recurrent CDI, FMT was associated with a significantly higher cumulative survival probability compared with matched control subjects. CONCLUSIONS: This prospective real-world data from Asia's first FMT registry demonstrated that FMT has an excellent long-term safety profile. The risk of developing new medical conditions beyond 12 months after FMT is low.


Subject(s)
Clostridioides difficile , Clostridium Infections , Diabetes Mellitus, Type 2 , Humans , Male , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Female , Fecal Microbiota Transplantation/adverse effects , Fecal Microbiota Transplantation/methods , Feces , Hong Kong , Prospective Studies , Treatment Outcome , Recurrence , Clostridium Infections/therapy
11.
Intest Res ; 22(1): 15-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37935653

ABSTRACT

Inflammatory bowel disease (IBD) is a multifactorial disease, which is thought to be an interplay between genetic, environment, microbiota, and immune-mediated factors. Dysbiosis in the gut microbial composition, caused by antibiotics and diet, is closely related to the initiation and progression of IBD. Differences in gut microbiota composition between IBD patients and healthy individuals have been found, with reduced biodiversity of commensal microbes and colonization of opportunistic microbes in IBD patients. Gut microbiota can, therefore, potentially be used for diagnosing and prognosticating IBD, and predicting its treatment response. Currently, there are no curative therapies for IBD. Microbiota-based interventions, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been recognized as promising therapeutic strategies. Clinical studies and studies done in animal models have provided sufficient evidence that microbiota-based interventions may improve inflammation, the remission rate, and microscopic aspects of IBD. Further studies are required to better understand the mechanisms of action of such interventions. This will help in enhancing their effectiveness and developing personalized therapies. The present review summarizes the relationship between gut microbiota and IBD immunopathogenesis. It also discusses the use of gut microbiota as a noninvasive biomarker and potential therapeutic option.

12.
Comput Struct Biotechnol J ; 21: 4804-4815, 2023.
Article in English | MEDLINE | ID: mdl-37841330

ABSTRACT

The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of each technique to serve as a practical guide for researchers and identify areas needing further methodological development. Establishing robust, standardized preprocessing will be essential for drawing valid biological conclusions from microbiome studies.

13.
Nutrients ; 15(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37836532

ABSTRACT

In view of the limited evidence showing anti-obesity effects of synbiotics via modulation of the gut microbiota in humans, a randomized clinical trial was performed. Assessment of the metabolic syndrome traits and profiling of the fecal gut microbiota using 16S rRNA gene sequencing in overweight and obese Hong Kong Chinese individuals before and after dietary intervention with an 8-week increased consumption of fruits and vegetables and/or synbiotic supplementation was conducted. The selected synbiotic contained two probiotics (Lactobacillus acidophilus NCFM and Bifidobacterium lactis HN019) and a prebiotic (polydextrose). Fifty-five overweight or obese individuals were randomized and divided into a synbiotic group (SG; n = 19), a dietary intervention group (DG; n = 18), and a group receiving combined interventions (DSG; n = 18). DSG showed the greatest weight loss effects and number of significant differences in clinical parameters compared to its baseline values-notably, decreases in fasting glucose, insulin, HOMA-IR, and triglycerides and an increase in HDL-cholesterol. DSG lowered Megamonas abundance, which was positively associated with BMI, body fat mass, and trunk fat mass. The results suggested that increasing dietary fiber consumption from fruits and vegetables combined with synbiotic supplementation is more effective than either approach alone in tackling obesity.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Probiotics , Synbiotics , Humans , Double-Blind Method , East Asian People , Hong Kong , Metabolic Syndrome/therapy , Obesity/therapy , Overweight/therapy , RNA, Ribosomal, 16S , Dietary Fiber
14.
Cell Rep ; 42(9): 113121, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37715952

ABSTRACT

Sebaceous glands (SGs) release oils that protect our skin, but how these glands respond to injury has not been previously examined. Here, we report that SGs are largely self-renewed by dedicated stem cell pools during homeostasis. Using targeted single-cell RNA sequencing, we uncovered both direct and indirect paths by which resident SG progenitors ordinarily differentiate into sebocytes, including transit through a Krt5+PPARγ+ transitional basal cell state. Upon skin injury, however, SG progenitors depart their niche, reepithelialize the wound, and are replaced by hair-follicle-derived stem cells. Furthermore, following targeted genetic ablation of >99% of SGs from dorsal skin, these glands unexpectedly regenerate within weeks. This regenerative process is mediated by alternative stem cells originating from the hair follicle bulge, is dependent upon FGFR2 signaling, and can be accelerated by inducing hair growth. Altogether, our studies demonstrate that stem cell plasticity promotes SG durability following injury.


Subject(s)
Sebaceous Glands , Skin , Cell Differentiation , Hair Follicle , Epithelial Cells
15.
J Gastroenterol Hepatol ; 38(10): 1682-1694, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37409560

ABSTRACT

BACKGROUND AND AIM: Patients with non-alcoholic fatty liver disease (NAFLD) exhibit compositional changes in their gut microbiome, which represents a potential therapeutic target. Probiotics, prebiotics, and synbiotics are microbiome-targeted therapies that have been proposed as treatment for NAFLD. We aim to systematically review the effects of these therapies in liver-related outcomes of NAFLD patients. METHODS: We conducted a systematic search in Embase (Ovid), Medline (Ovid), Scopus, Cochrane, and EBSCOhost from inception to August 19, 2022. We included randomized controlled trials (RCTs) that treated NAFLD patients with prebiotics and/or probiotics. We meta-analyzed the outcomes using standardized mean difference (SMD) and assessed study heterogeneity using Cochran's Q test and I2 statistics. Risk of bias was assessed using the Cochrane Risk-of-Bias 2 tool. RESULTS: A total of 41 (18 probiotics, 17 synbiotics, and 6 prebiotics) RCTs were included. Pooled data demonstrated that the intervention had significantly improved liver steatosis (measured by ultrasound grading) (SMD: 4.87; 95% confidence interval [CI]: 3.27, 7.25), fibrosis (SMD: -0.61 kPa; 95% CI: -1.12, -0.09 kPa), and liver enzymes including alanine transaminase (SMD: -0.86 U/L; 95% CI: -1.16, -0.56 U/L), aspartate transaminase (SMD: -0.87 U/L; 95% CI: -1.22, -0.52 U/L), and gamma-glutamyl transferase (SMD: -0.77 U/L; 95% CI: -1.26, -0.29 U/L). CONCLUSIONS: Microbiome-targeted therapies were associated with significant improvements in liver-related outcomes in NAFLD patients. Nevertheless, limitations in existing literature like heterogeneity in probiotic strains, dosage, and formulation undermine our findings. This study was registered with PROSPERO (CRD42022354562) and supported by the Nanyang Technological University Start-up Grant and Wang Lee Wah Memorial Fund.


Subject(s)
Non-alcoholic Fatty Liver Disease , Probiotics , Synbiotics , Humans , Prebiotics , Non-alcoholic Fatty Liver Disease/therapy , Probiotics/therapeutic use
16.
Foods ; 12(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37444223

ABSTRACT

A new next-generation probiotic, Christensenella minuta was first discovered in 2012 from healthy human stool and described under the phylum Firmicutes. C. minuta is a subdominant commensal bacterium with highly heritable properties that exhibits mutual interactions with other heritable microbiomes, and its relative abundance is positively correlated with the lean host phenotype associated with a low BMI index. It has been the subject of numerous studies, owing to its potential health benefits. This article reviews the evidence from various studies of C. minuta interventions using animal models for managing metabolic diseases, such as obesity, inflammatory bowel disease, and type 2 diabetes, characterized by gut microbiota dysbiosis and disruption of host metabolism. Notably, more studies have presented the complex interaction between C. minuta and host metabolism when it comes to metabolic health. Therefore, C. minuta could be a potential candidate for innovative microbiome-based biotherapy via fecal microbiota transplantation or oral administration. However, the detailed underlying mechanism of action requires further investigation.

17.
Gut ; 72(11): 2112-2122, 2023 11.
Article in English | MEDLINE | ID: mdl-37491158

ABSTRACT

OBJECTIVE: Roseburia intestinalis is a probiotic species that can suppress intestinal inflammation by producing metabolites. We aimed to study the role of R. intestinalis in colorectal tumourigenesis and immunotherapy. DESIGN: R. intestinalis abundance was evaluated in stools of patients with colorectal cancer (CRC) (n=444) and healthy controls (n=575). The effects of R. intestinalis were studied in ApcMin/+ or azoxymethane (AOM)-induced CRC mouse models, and in syngeneic mouse xenograft models of CT26 (microsatellite instability (MSI)-low) or MC38 (MSI-high). The change of immune landscape was evaluated by multicolour flow cytometry and immunohistochemistry staining. Metabolites were profiled by metabolomic profiling. RESULTS: R. intestinalis was significantly depleted in stools of patients with CRC compared with healthy controls. R. intestinalis administration significantly inhibited tumour formation in ApcMin/+ mice, which was confirmed in mice with AOM-induced CRC. R. intestinalis restored gut barrier function as indicated by improved intestinal permeability and enhanced expression of tight junction proteins. Butyrate was identified as the functional metabolite generated by R. intestinalis. R. intestinalis or butyrate suppressed tumour growth by inducing cytotoxic granzyme B+, interferon (IFN)-γ+ and tumour necrosis factor (TNF)-α+ CD8+ T cells in orthotopic mouse models of MC38 or CT26. R. intestinalis or butyrate also significantly improved antiprogrammed cell death protein 1 (anti-PD-1) efficacy in mice bearing MSI-low CT26 tumours. Mechanistically, butyrate directly bound to toll-like receptor 5 (TLR5) receptor on CD8+ T cells to induce its activity through activating nuclear factor kappa B (NF-κB) signalling. CONCLUSION: R. intestinalis protects against colorectal tumourigenesis by producing butyrate, which could also improve anti-PD-1 efficacy by inducing functional CD8+ T cells. R. intestinalis is a potential adjuvant to augment anti-PD-1 efficacy against CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Humans , Mice , Animals , Butyrates/pharmacology , Carcinogenesis , Cell Transformation, Neoplastic , Colorectal Neoplasms/metabolism
18.
Cancer Cell ; 41(8): 1450-1465.e8, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37478851

ABSTRACT

Carnobacterium maltaromaticum was found to be specifically depleted in female patients with colorectal cancer (CRC). Administration of C. maltaromaticum reduces intestinal tumor formation in two murine CRC models in a female-specific manner. Estrogen increases the attachment and colonization of C. maltaromaticum via increasing the colonic expression of SLC3A2 that binds to DD-CPase of this bacterium. Metabolomic and transcriptomic profiling unveils the increased gut abundance of vitamin D-related metabolites and the mucosal activation of vitamin D receptor (VDR) signaling in C. maltaromaticum-gavaged mice in a gut microbiome- and VDR-dependent manner. In vitro fermentation system confirms the metabolic cross-feeding of C. maltaromaticum with Faecalibacterium prausnitzii to convert C. maltaromaticum-produced 7-dehydrocholesterol into vitamin D for activating the host VDR signaling. Overall, C. maltaromaticum colonizes the gut in an estrogen-dependent manner and acts along with other microbes to augment the intestinal vitamin D production to activate the host VDR for suppressing CRC.


Subject(s)
Colorectal Neoplasms , Vitamin D , Mice , Female , Animals , Vitamin D/metabolism , Carnobacterium/metabolism , Estrogens/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism
19.
EBioMedicine ; 93: 104670, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37343363

ABSTRACT

BACKGROUND: Obesity is a risk factor for colorectal cancer (CRC). The role of gut microbiota in mediating the cancer-promoting effect of obesity is unknown. METHODS: Azoxymethane (AOM)-treated, ApcMin/+ and germ-free mice were gavaged with feces from obese individuals and control subjects respectively. The colonic tumor load and number were recorded at the endpoint in two carcinogenic models. The gut microbiota composition and colonic transcriptome were assessed by metagenomic sequencing and RNA sequencing, respectively. The anticancer effects of bacteria depleted in fecal samples of obese individuals were validated. FINDINGS: Conventional AOM-treated and ApcMin/+ mice receiving feces from obese individuals showed significantly increased colon tumor formation compared with those receiving feces from control subjects. AOM-treated mice receiving feces from obese individuals showed impaired intestinal barrier function and significant upregulation of pro-inflammatory cytokines and activation of oncogenic Wnt signaling pathway. Consistently, transferring feces from obese individuals to germ-free mice led to increased colonic cell proliferation, intestinal barrier function impairment, and induction of oncogenic and proinflammatory gene expression. Moreover, germ-free mice transplanted with feces from obese human donors had increased abundance of potential pathobiont Alistipes finegoldii, and reduced abundance of commensals Bacteroides vulgatus and Akkermansia muciniphila compared with those receiving feces from human donors with normal body mass index (BMI). Validation experiments showed that B. vulgatus and A. muciniphila demonstrated anti-proliferative effects in CRC, while A. finegoldii promoted CRC tumor growth. INTERPRETATION: Our results supported the role of obesity-associated microbiota in colorectal carcinogenesis and identified putative bacterial candidates that may mediate its mechanisms. Microbiota modulation in obese individuals may provide new approaches to prevent or treat obesity-related cancers including CRC. FUNDING: This work was funded by National Key Research and Development Program of China (2020YFA0509200/2020YFA0509203), National Natural Science Foundation of China (81922082), RGC Theme-based Research Scheme Hong Kong (T21-705/20-N), RGC Research Impact Fund Hong Kong (R4632-21F), RGC-CRF Hong Kong (C4039-19GF and C7065-18GF), RGC-GRF Hong Kong (14110819, 14111621), and NTU Start-Up Grant (021337-00001).


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Mice , Animals , Carcinogenesis , Obesity/complications , Azoxymethane/toxicity , Colorectal Neoplasms/genetics , Mice, Inbred C57BL , Disease Models, Animal
20.
J Health Psychol ; 28(13): 1238-1249, 2023 11.
Article in English | MEDLINE | ID: mdl-37246408

ABSTRACT

Hope is a goal-directed thought that reflects the sense of control over uncertainties and can promote adjustment to chronic illness. This study aimed to assess the level of hope among patients on peritoneal dialysis and evaluate the association of hope with health-related quality of life and psychological distress. This cross-sectional study included 134 Chinese patients receiving peritoneal dialysis in Hong Kong. Patients' level of hope was assessed using the Adult Trait Hope Scale. Participants who were employed, had a higher income, and received automated peritoneal dialysis reported a higher hope score. Hope was found to have significant correlations with age and social support. A higher hope score was associated with better mental well-being and less severe depressive symptoms. Specific relationships between agency/pathway thinking and these outcomes were identified. The patient subgroups at risk for losing hope need to be identified and received early interventions to prevent adverse outcomes.


Subject(s)
Kidney Failure, Chronic , Peritoneal Dialysis , Psychological Distress , Adult , Humans , Quality of Life/psychology , Cross-Sectional Studies , Peritoneal Dialysis/psychology , Mental Health , Depression/psychology , Renal Dialysis/psychology , Kidney Failure, Chronic/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...