Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Neurobiol Aging ; 86: 201.e9-201.e14, 2020 02.
Article in English | MEDLINE | ID: mdl-30797548

ABSTRACT

Mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP) are major genetic causes of early-onset Alzheimer's disease (EOAD). Clinical heterogeneity is frequently observed in patients with PSEN1 and PSEN2 mutations. Using whole exome sequencing, we screened a Dutch cohort of 68 patients with EOAD for rare variants in Mendelian Alzheimer's disease, frontotemporal dementia, and prion disease genes. We identified 3 PSEN1 and 2 PSEN2 variants. Three variants, 1 in PSEN1 (p.H21Profs*2) and both PSEN2 (p.A415S and p.M174I), were novel and absent in control exomes. These novel variants can be classified as probable pathogenic, except for PSEN1 (p.H21Profs*2) in which the pathogenicity is uncertain. The initial clinical symptoms between mutation carriers varied from behavioral problems to memory impairment. Our findings extend the mutation spectrum of EOAD and underline the clinical heterogeneity among PSEN1 and PSEN2 mutation carriers. Screening for Alzheimer's disease-causing genes is indicated in presenile dementia with an overlapping clinical diagnosis.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Genetic Testing/methods , Mutation , Presenilin-1/genetics , Presenilin-2/genetics , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Cerebral Cortex/pathology , Female , Hippocampus/pathology , Humans , Male
2.
Parkinsonism Relat Disord ; 65: 243-247, 2019 08.
Article in English | MEDLINE | ID: mdl-31147221

ABSTRACT

OBJECTIVE: To analyse LRP10 variants, recently associated with the development of Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), in a series of patients and controls from the South-West of the Netherlands (Walcheren). METHODS: A series of 130 patients with PD, PDD or DLB were clinically examined, and a structured questionnaire used to collect information about family history of PD and dementia. The entire LRP10 coding region was sequenced by Sanger methods in all patients, and haplotype analysis was performed for one recurrent LRP10 variant. The fragments containing possibly pathogenic LRP10 variants were sequenced in 62 unaffected control subjects from the same region. Other known PD-associated genes were analyzed by exome sequencing and gene dosage in the carriers of LRP10 variants. RESULTS: Four patients were carriers of a rare heterozygous, possibly pathogenic LRP10 variant: p.Arg151Cys, p.Arg263His, and p.Tyr307Asn. None of these variants was detected among the controls, nor were additional mutations identified in known PD-associated genes in the four LRP10 variant carriers. The previously reported p.Tyr307Asn variant was identified in two patients (with PD and PDD), who are connected genealogically within six generations, and in one of their relatives with cognitive decline. Haplotype analysis suggests a common founder for the p.Tyr307Asn variant carriers analyzed. DISCUSSION: We report three possibly pathogenic LRP10 variants in patients with PD and PDD from a local Dutch population. The identification of additional patients carrying the p.Tyr307Asn variant provides some further evidence that this variant is pathogenic for PD and PDD.


Subject(s)
Dementia/genetics , LDL-Receptor Related Proteins/genetics , Lewy Body Disease/genetics , Parkinson Disease/genetics , Aged , Female , Humans , Male , Middle Aged , Netherlands
3.
Neurobiol Aging ; 74: 225-233, 2019 02.
Article in English | MEDLINE | ID: mdl-30497016

ABSTRACT

Knowledge about the molecular mechanisms driving Alzheimer's disease (AD) is still limited. To learn more about AD biology, we performed whole transcriptome sequencing on the hippocampus of 20 AD cases and 10 age- and sex-matched cognitively healthy controls. We observed 2716 differentially expressed genes, of which 48% replicated in a second data set of 84 AD cases and 33 controls. We used an integrative network-based approach for combining transcriptomic and protein-protein interaction data to find differentially expressed gene modules that may reflect key processes in AD biology. A total of 735 differentially expressed genes were clustered into 33 modules, of which 82% replicated in a second data set, highlighting the robustness of this approach. These 27 modules were enriched for signal transduction, transport, response to stimulus, and several organic and cellular metabolic pathways. Ten modules interacted with previously described AD genes. Our study indicates that analyzing RNA-expression data based on annotated gene modules is more robust than on individual genes. We provide a comprehensive overview of the biological processes involved in AD, and the detected differentially expressed gene modules may provide a molecular basis for future research into mechanisms underlying AD.


Subject(s)
Alzheimer Disease/genetics , Gene Expression Profiling , Hippocampus , Protein Interaction Maps , Signal Transduction/genetics , Aged , Aged, 80 and over , Alzheimer Disease/etiology , Female , Gene Expression , Humans , Male , Middle Aged , RNA/genetics , RNA/metabolism , Sequence Analysis, RNA
4.
Neurobiol Aging ; 73: 229.e11-229.e18, 2019 01.
Article in English | MEDLINE | ID: mdl-30314817

ABSTRACT

Next-generation sequencing has contributed to our understanding of the genetics of Alzheimer's disease (AD) and has explained a substantial part of the missing heritability of familial AD. We sequenced 19 exomes from 8 Dutch families with a high AD burden and identified EIF2AK3, encoding for protein kinase RNA-like endoplasmic reticulum kinase (PERK), as a candidate gene. Gene-based burden analysis in a Dutch AD exome cohort containing 547 cases and 1070 controls showed a significant association of EIF2AK3 with AD (OR 1.84 [95% CI 1.07-3.17], p-value 0.03), mainly driven by the variant p.R240H. Genotyping of this variant in an additional cohort from the Rotterdam Study showed a trend toward association with AD (p-value 0.1). Immunohistochemical staining with pPERK and peIF2α of 3 EIF2AK3 AD carriers showed an increase in hippocampal neuronal cells expressing these proteins compared with nondemented controls, but no difference was observed in AD noncarriers. This study suggests that rare variants in EIF2AK3 may be associated with disease risk in AD.


Subject(s)
Alzheimer Disease/genetics , Genetic Association Studies , Genetic Variation/genetics , eIF-2 Kinase/genetics , Aged , Female , Hippocampus/metabolism , Humans , Male , Middle Aged , Netherlands , Risk , Exome Sequencing , eIF-2 Kinase/metabolism
5.
J Alzheimers Dis ; 65(4): 1139-1146, 2018.
Article in English | MEDLINE | ID: mdl-30103325

ABSTRACT

Valosin-containing protein (VCP) is involved in multiple cellular activities. Mutations in VCP lead to heterogeneous clinical presentations including inclusion body myopathy with Paget's disease of the bone, frontotemporal dementia and amyotrophic lateral sclerosis, even in patients carrying the same mutation. We screened a cohort of 48 patients with familial frontotemporal dementia (FTD) negative for MAPT, GRN, and C9orf72 mutations for other known FTD genes by using whole exome sequencing. In addition, we carried out targeted sequencing of a cohort of 37 patients with frontotemporal lobar degeneration with Transactive response DNA-binding protein 43 (TDP-43) subtype from the Netherlands Brain bank. Two novel (p.Thr262Ser and p.Arg159Ser) and one reported (p.Met158Val) VCP mutations in three patients with a clinical diagnosis of FTD were identified, and were absence in population-match controls. All three patients presented with behavioral changes, with additional semantic deficits in one. No signs of Paget or muscle disease were observed. Pathological examination of the patient with VCP p.Arg159Ser mutation showed numerous TDP-43 immunoreactive (IR) neuronal intranuclear inclusions (NII) and dystrophic neurites (DN), while a lower number of NII and DN were observed in the patient with the VCP p.Thr262Ser mutation. Pathological findings of both patients were consistent with FTLD-TDP subtype D. Furthermore, only rare VCP-IR NII was observed in both cases. Our study expands the clinical heterogeneity of VCP mutations carriers, and indicates that other additional factors, such as genetic modifiers, may determine the clinical phenotype.


Subject(s)
Frontotemporal Dementia/genetics , Mutation/genetics , Valosin Containing Protein/genetics , Aged , Aged, 80 and over , Cohort Studies , Computational Biology , DNA-Binding Proteins/genetics , Family Health , Female , Genetic Testing , Humans , Male , Middle Aged , Netherlands , Neurologic Examination
6.
Eur J Hum Genet ; 25(8): 973-981, 2017 08.
Article in English | MEDLINE | ID: mdl-28537274

ABSTRACT

Accumulating evidence suggests that genetic variants in the SORL1 gene are associated with Alzheimer disease (AD), but a strategy to identify which variants are pathogenic is lacking. In a discovery sample of 115 SORL1 variants detected in 1908 Dutch AD cases and controls, we identified the variant characteristics associated with SORL1 variant pathogenicity. Findings were replicated in an independent sample of 103 SORL1 variants detected in 3193 AD cases and controls. In a combined sample of the discovery and replication samples, comprising 181 unique SORL1 variants, we developed a strategy to classify SORL1 variants into five subtypes ranging from pathogenic to benign. We tested this pathogenicity screen in SORL1 variants reported in two independent published studies. SORL1 variant pathogenicity is defined by the Combined Annotation Dependent Depletion (CADD) score and the minor allele frequency (MAF) reported by the Exome Aggregation Consortium (ExAC) database. Variants predicted strongly damaging (CADD score >30), which are extremely rare (ExAC-MAF <1 × 10-5) increased AD risk by 12-fold (95% CI 4.2-34.3; P=5 × 10-9). Protein-truncating SORL1 mutations were all unknown to ExAC and occurred exclusively in AD cases. More common SORL1 variants (ExAC-MAF≥1 × 10-5) were not associated with increased AD risk, even when predicted strongly damaging. Findings were independent of gender and the APOE-ɛ4 allele. High-risk SORL1 variants were observed in a substantial proportion of the AD cases analyzed (2%). Based on their effect size, we propose to consider high-risk SORL1 variants next to variants in APOE, PSEN1, PSEN2 and APP for personalized risk assessments in clinical practice.


Subject(s)
Alzheimer Disease/genetics , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/genetics , Mutation , Aged, 80 and over , Alzheimer Disease/diagnosis , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Phenotype
7.
Neurol Genet ; 2(3): e80, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27280171

ABSTRACT

OBJECTIVES: We describe the largest series of patients with TARDBP mutations presenting with frontotemporal dementia (FTD) and review the cases in the literature to precisely characterize FTD diseases associated with this genotype. METHODS: The phenotypic characteristics of 29 TARDBP patients, including 10 new French and Dutch cases and 19 reviewed from the literature, were evaluated. RESULTS: The most frequent phenotype was a behavioral variant frontotemporal dementia (bvFTD), but a significant proportion (40%) of our patients had semantic (svFTD) or nonfluent variants (nfvFTD) at onset; and svFTD was significantly more frequent in TARDBP carriers than in other FTD genotypes (p < 0.001). Remarkably, only a minority (40%) of our patients secondarily developed amyotrophic lateral sclerosis (ALS). Two patients carried a homozygous mutation but strikingly different phenotypes (bvFTD and ALS) indicating that homozygosity does not result in a specific phenotype. Earlier age at onset in children than parent's generations, mimicking an apparent "anticipation" (21.8 ± 9.3 years, p = 0.001), and possible reduced penetrance were present in most families. CONCLUSIONS: This study enlarges the phenotypic spectrum of TARDBP and will have important clinical implications: (1) FTD can be the only clinical manifestation of TARDBP mutations; (2) Initial language or semantic disorders might be indicative of a specific genotype; (3) Mutations should be searched in all FTD phenotypes after exclusion of major genes, even in the absence of ALS in the proband or in family history; (4) reduced penetrance and clinical variability should be considered to deliver appropriate genetic counseling.

10.
Brain ; 137(Pt 5): 1361-73, 2014 May.
Article in English | MEDLINE | ID: mdl-24722252

ABSTRACT

Pathological accumulation of intermediate filaments can be observed in neurodegenerative disorders, such as Alzheimer's disease, frontotemporal dementia and Parkinson's disease, and is also characteristic of neuronal intermediate filament inclusion disease. Intermediate filaments type IV include three neurofilament proteins (light, medium and heavy molecular weight neurofilament subunits) and α-internexin. The phosphorylation of intermediate filament proteins contributes to axonal growth, and is regulated by protein kinase A. Here we describe a family with a novel late-onset neurodegenerative disorder presenting with dementia and/or parkinsonism in 12 affected individuals. The disorder is characterized by a unique neuropathological phenotype displaying abundant neuronal inclusions by haematoxylin and eosin staining throughout the brain with immunoreactivity for intermediate filaments. Combining linkage analysis, exome sequencing and proteomics analysis, we identified a heterozygous c.149T>G (p.Leu50Arg) missense mutation in the gene encoding the protein kinase A type I-beta regulatory subunit (PRKAR1B). The pathogenicity of the mutation is supported by segregation in the family, absence in variant databases, and the specific accumulation of PRKAR1B in the inclusions in our cases associated with a specific biochemical pattern of PRKAR1B. Screening of PRKAR1B in 138 patients with Parkinson's disease and 56 patients with frontotemporal dementia did not identify additional novel pathogenic mutations. Our findings link a pathogenic PRKAR1B mutation to a novel hereditary neurodegenerative disorder and suggest an altered protein kinase A function through a reduced binding of the regulatory subunit to the A-kinase anchoring protein and the catalytic subunit of protein kinase A, which might result in subcellular dislocalization of the catalytic subunit and hyperphosphorylation of intermediate filaments.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIbeta Subunit/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Polymorphism, Single Nucleotide/genetics , Aged , Amyloid beta-Peptides/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , DNA-Binding Proteins/metabolism , Electron Microscope Tomography , Family Health , Female , Frontal Lobe/metabolism , Frontal Lobe/pathology , Frontal Lobe/ultrastructure , Genetic Association Studies , Humans , Male , Middle Aged , Models, Molecular , Nerve Tissue Proteins/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...