Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35954456

ABSTRACT

Pharmacological inhibitors of DNA damage response (DDR) proteins, such as the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) kinases and poly (ADP-ribose) polymerase (PARP), have been developed to overcome tumor radioresistance. Despite demonstrating radiosensitization preclinically, they have performed suboptimally in clinical trials, possibly due to an incomplete understanding of the influence of DDR inhibition on ionizing radiation (IR) dose fractionation and sublethal damage repair. Hence, this study aimed to evaluate the radiosensitizing ability under fractionation of ATM inhibitor AZD0156, ATR inhibitor AZD6738 and PARP inhibitor AZD2281 (olaparib), utilizing MDA-MB-231 and MCF-7 human breast cancer cells. Clonogenic assays were performed to assess cell survival and sublethal damage repair after treatment with DDR inhibitors and either single-dose or fractionated IR. Immunofluorescence microscopy was utilized to evaluate DNA double-strand break repair kinetics. Cell cycle distributions were investigated using flow cytometry. All inhibitors showed significant radiosensitization, which was significantly greater following fractionated IR than single-dose IR. They also led to more unrepaired DNA double-strand breaks at 24 h post-IR. This study provides preclinical evidence for the role of AZD0156, AZD6738 and olaparib as radiosensitizing agents. Still, it highlights the need to evaluate these drugs in fractionated settings mirroring clinical practice to optimize the trial design.

SELECTION OF CITATIONS
SEARCH DETAIL
...