Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 349: 140973, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122940

ABSTRACT

The increasing demand for high-performance lithium-ion batteries (LIBs) has emphasized the need for affordable and sustainable materials, prompting the exploration of waste upcycling to address global sustainability challenges. In this study, we efficiently converted polypropylene (PP) plastic waste from used centrifuge tubes into activated polypropylene carbon (APC) using microwave-assisted pyrolysis. The synthesis of APC was optimized using response surface methodology/central composite design (RSM/CCD). Based on the RSM results, the optimal conditions for PP plastic conversion into carbon were determined as follows: HNO3 concentration of 3.5 M, microwave temperature of 230 °C, and holding time of 25 min. Under these conditions, the obtained intensity ratio of Id/Ig in PP carbon was 0.681 ± 0.013, with an error of 6.81 ± 0.013 % between predicted and actual values. The physicochemical studies, including FESEM-EDX, XRD, and Raman spectroscopy, confirmed the successful synthesis of APC samples. The APC 800 material exhibited a well-organized three-dimensional structure characterized by large pores and mesopores, enabling fast ion transport in the electrode. As a result, the APC 800 electrode demonstrated an initial discharge capacity of 381.0 mAh/g, an improved initial coulombic efficiency of 85.1%, and excellent cycling stability after 100 cycles. Notably, the APC 800 electrode displayed remarkable rate performance, showing a reversible capacity of 355.1 mAh/g when the current density was reset to 0.2 A/g, highlighting its high electrochemical reversibility. The outstanding characteristics of APC 800 as an anode electrode material for high-performance lithium-ion batteries suggest a promising future for its application in the field.


Subject(s)
Carbon , Lithium , Microwaves , Polypropylenes , Charcoal , Electrodes , Ions
2.
Sci Rep ; 13(1): 17424, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833323

ABSTRACT

This research explores the potential of microwave-synthesized MoS2-graphene nanohybrid as additives to enhance the tribological properties of diesel-based engine oil. The synthesis method offers significant advantages, reducing both synthesis time and energy consumption by 90-98% compared to conventional approaches. The synthesized nanohybrids are characterized through FESEM, EDX, XRD, and Raman spectroscopy to understand their morphology and functional group interactions. These nanohybrids are incorporated into 20W40 engine oil following synthesis, and a comprehensive assessment of their properties is conducted. This evaluation covers critical parameters like viscosity index, stability, volatility, as well as tribological properties, oxidation resistance, and thermal conductivity of the oil-nanohybrid system. Results demonstrate that adding just 0.05 wt% of MoS2-graphene nanohybrid leads to a remarkable 58.82% reduction in friction coefficient and a significant 36.26% decrease in the average wear scar diameter. Additionally, oxidation resistance improves by 19.21%, while thermal conductivity increases notably by 19.83% (at 100 °C). The study demonstrates the synergistic effects of these nanohybrids in reducing friction and wear, enhancing oxidation resistance, and improving thermal conductivity. In conclusion, this research highlights the potential of microwave-synthesized MoS2-graphene nanohybrid as promising tribological additives for diesel engine oils. Their successful integration could significantly enhance the performance and durability of critical mechanical components in diesel engines, representing a significant advancement in lubrication technology.

3.
Sci Rep ; 13(1): 12559, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532805

ABSTRACT

In this study, MoS2-hBN hybrid nanoparticles were synthesized using an advanced microwave platform for new nanolubricant formulations. The synthesized nanoparticles were characterized by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Raman spectroscopy. The hybrid nanoparticles were then introduced into a 20W40 diesel-based engine oil to produce a nanolubricant. The physical and chemical properties of the nanolubricant were investigated, including the viscosity index, stability, volatility, tribological properties, oxidation properties, and thermal conductivity. The results showed that the inclusion of 0.05 wt% MoS2-hBN hybrid nanoparticles in the oil significantly reduced the coefficient of friction and wear scar diameter by 68.48% and 35.54%, respectively. Moreover, it exhibited substantial oxidation and thermal conductivity improvement of 38.76% and 28.30%, respectively, at 100 °C. These findings demonstrate the potential of MoS2-hBN hybrid nanoparticles as an effective additive to enhance the properties of nanolubricant significantly. Furthermore, this study offers valuable insights into the underlying mechanisms responsible for the observed enhancements. The promising outcomes of this investigation contribute to the advancement of nanotechnology-based lubricants, showcasing their potential for improving engine efficiency and prolonging the lifespan of machinery.

SELECTION OF CITATIONS
SEARCH DETAIL