Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 369(1): 453-9, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22226499

ABSTRACT

In this paper, we report the novel finding that the cellular delivery efficiency of siRNAs or their mimic double-stranded (ds)DNA using layered double hydroxide (LDH) nanoparticles is dependent upon the nucleotide sequence. Efficacy of LDH-mediated delivery of four different siRNAs into cortical neurons and NIH 3T3 cells was found to vary widely (from 6 to 80%, and 2-11%, respectively). Our investigation into the formation of dsDNA-LDH complexes through monitoring the dsDNA:LDH mass ratio at the point of zero charge (PZC) indicated that the degree of intercalation of the individual dsDNA sequences into the LDH nanoparticles varied significantly. The dsDNA:LDH mass ratio at the PZC was found to be dependent on the nucleotide sequence. We further observed that PZC for each sequence was positively related to the extent of LDH-mediated internalization of the equivalent siRNA into neurons and fibroblasts. This novel finding therefore suggests that the mass ratio at the PZC is a useful predictive tool with which to assess the intercalation efficiency of selected siRNA sequences into the LDH interlayer and subsequent internalization into the cell cytoplasm. This finding will allow a more controlled approach to the design of suitable siRNA sequences for LDH-mediated siRNA delivery.


Subject(s)
Hydroxides/chemistry , Nanoparticles/chemistry , Oligonucleotides/chemistry , RNA, Small Interfering/administration & dosage , Animals , Base Sequence , Brain/cytology , Cells, Cultured , Gene Transfer Techniques , Mice , NIH 3T3 Cells , RNA, Small Interfering/chemistry
2.
Pharmaceutics ; 4(2): 296-313, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-24300233

ABSTRACT

Using molecular dynamics (MD) simulations, we explore the structural and dynamical properties of siRNA within the intercalated environment of a Mg:Al 2:1 Layered Double Hydroxide (LDH) nanoparticle. An ab initio force field (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies: COMPASS) is used for the MD simulations of the hybrid organic-inorganic systems. The structure, arrangement, mobility, close contacts and hydrogen bonds associated with the intercalated RNA are examined and contrasted with those of the isolated RNA. Computed powder X-ray diffraction patterns are also compared with related LDH-DNA experiments. As a method of probing whether the intercalated environment approximates the crystalline or rather the aqueous state, we explore the stability of the principle parameters (e.g., the major groove width) that differentiate both A- and A'- crystalline forms of siRNA and contrast this with recent findings for the same siRNA simulated in water. We find the crystalline forms remain structurally distinct when intercalated, whereas this is not the case in water. Implications for the stability of hybrid LDH-RNA systems are discussed.

3.
Biomaterials ; 31(33): 8770-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20709387

ABSTRACT

Small interfering RNAs (siRNAs) are capable of targeting and destroying specific mRNAs, making them particularly suited to the treatment of neurodegenerative conditions such as Huntington's Disease where the production of abnormal proteins results in a gain-of-function phenotype. Although a variety of nanoparticle formulations are currently under development as siRNA delivery systems, application of these technologies has been limited by their high cytotoxicity, low drug loading capacity and release, and inability to penetrate cell membranes. Layered double hydroxide (LDH) nanoparticles are now emerging as a potential new drug delivery system as they exhibit low cytotoxicity and are highly biocompatible. Here we present the first study investigating LDH delivery of siRNAs to primary cultured neurons. We show that internalization by neurons is rapid, dose-dependent and saturable, and markedly more efficient than in other cell types. We demonstrate that siRNA-LDH complexes are internalized by clathrin-dependent endocytosis at the cell body and in neurites, with subsequent retrograde transport to the cell body followed by efficient release into the cytoplasm. Finally we show that LDH mediated siRNA delivery effectively silences neuronal gene expression. This study therefore confirms the potential of LDH nanoparticles as a drug delivery system for patients suffering from neurodegenerative disease.


Subject(s)
Aluminum Compounds/chemistry , Cerebral Cortex/cytology , Gene Transfer Techniques , Hydroxides/chemistry , Magnesium Compounds/chemistry , Nanoparticles/chemistry , Neurons/metabolism , RNA, Small Interfering/metabolism , Animals , Axons/metabolism , Cell Survival , Clathrin/metabolism , Endocytosis , Fibroblasts/metabolism , Gene Knockdown Techniques , Gene Silencing , Humans , Mice , Mice, Inbred C57BL , Nanoparticles/ultrastructure , Neurons/cytology , Neurons/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...