Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892397

ABSTRACT

Pathogenic bacteria have several mechanisms to evade the host's immune response and achieve an efficient infection. Bacterial extracellular vesicles (EVs) are a relevant cellular communication mechanism, since they can interact with other bacterial cells and with host cells. In this review, we focus on the EVs produced by some World Health Organization (WHO) priority Gram-negative and Gram-positive pathogenic bacteria; by spore-producing bacteria; by Mycobacterium tuberculosis (a bacteria with a complex cell wall); and by Treponema pallidum (a bacteria without lipopolysaccharide). We describe the classification and the general properties of bacterial EVs, their role during bacterial infections and their effects on the host immune response. Bacterial EVs contain pathogen-associated molecular patterns that activate innate immune receptors, which leads to cytokine production and inflammation, but they also contain antigens that induce the activation of B and T cell responses. Understanding the many effects of bacterial EVs on the host's immune response can yield new insights on the pathogenesis of clinically important infections, but it can also lead to the development of EV-based diagnostic and therapeutic strategies. In addition, since EVs are efficient activators of both the innate and the adaptive immune responses, they constitute a promising platform for vaccine development.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Humans , Animals , Immunity, Innate , Host-Pathogen Interactions/immunology , Bacterial Infections/immunology , Bacterial Infections/microbiology , Bacteria/immunology
2.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893461

ABSTRACT

Metronidazole (MTZ) is the most common drug used against Trichomonas vaginalis (T. vaginalis) infections; however, treatment failures and high rates of recurrence of trichomoniasis have been reported, suggesting the presence of resistance in T. vaginalis to MTZ. Therefore, research into new therapeutic options against T. vaginalis infections has become increasingly urgent. This study investigated the trichomonacidal activity of a series of five imidazole carbamate compounds (AGR-1, AGR-2, AGR-3, AGR-4, and AGR-5) through in vitro susceptibility assays to determine the IC50 value of each compound. All five compounds demonstrated potent trichomonacidal activity, with IC50 values in the nanomolar range and AGR-2 being the most potent (IC50 400 nM). To gain insight into molecular events related to AGR-induced cell death in T. vaginalis, we analyzed the expression profiles of some metabolic genes in the trophozoites exposed to AGR compounds and MTZ. It was found that both AGR and MTZ compounds reduced the expression of the glycolytic genes (CK, PFK, TPI, and ENOL) and genes involved in metabolism (G6PD, TKT, TALDO, NADHOX, ACT, and TUB), suggesting that disturbing these key metabolic genes alters the survival of the T. vaginalis parasite and that they probably share a similar mechanism of action. Additionally, the compounds showed low cytotoxicity in the Caco-2 and HT29 cell lines, and the results of the ADMET analysis indicated that these compounds have pharmacokinetic properties similar to those of MTZ. The findings offer significant insights that can serve as a basis for future in vivo studies of the compounds as a potential new treatment against T. vaginalis.


Subject(s)
Carbamates , Imidazoles , Trichomonas vaginalis , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/genetics , Trichomonas vaginalis/growth & development , Imidazoles/pharmacology , Imidazoles/chemistry , Humans , Carbamates/pharmacology , Carbamates/chemistry , Metronidazole/pharmacology , Metronidazole/chemistry , Gene Expression Regulation/drug effects , Trophozoites/drug effects
3.
Int J Mol Sci ; 24(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37511272

ABSTRACT

Giardiasis, which is caused by Giardia lamblia infection, is a relevant cause of morbidity and mortality worldwide. Because no vaccines are currently available to treat giardiasis, chemotherapeutic drugs are the main options for controlling infection. Evidence has shown that the nitro drug nitazoxanide (NTZ) is a commonly prescribed treatment for giardiasis; however, the mechanisms underlying NTZ's antigiardial activity are not well-understood. Herein, we identified the glucose-6-phosphate::6-phosphogluconate dehydrogenase (GlG6PD::6PGL) fused enzyme as a nitazoxanide target, as NTZ behaves as a GlG6PD::6PGL catalytic inhibitor. Furthermore, fluorescence assays suggest alterations in the stability of GlG6PD::6PGL protein, whereas the results indicate a loss of catalytic activity due to conformational and folding changes. Molecular docking and dynamic simulation studies suggest a model of NTZ binding on the active site of the G6PD domain and near the structural NADP+ binding site. The findings of this study provide a novel mechanistic basis and strategy for the antigiardial activity of the NTZ drug.


Subject(s)
Giardia lamblia , Giardiasis , Humans , Giardiasis/drug therapy , Molecular Docking Simulation , Thiazoles/pharmacology , Thiazoles/therapeutic use
4.
J Leukoc Biol ; 113(6): 588-603, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36987875

ABSTRACT

Tuberculosis remains one of the leading public health problems in the world. The mechanisms that lead to the activation of the immune response against Mycobacterium tuberculosis have been extensively studied, with a focus on the role of cytokines as the main signals for immune cell communication. However, less is known about the role of other signals, such as extracellular vesicles, in the communication between immune cells, particularly during the activation of the adaptive immune response. In this study, we determined that extracellular vesicles released by human neutrophils infected with M. tuberculosis contained several host proteins that are ectosome markers. In addition, we demonstrated that extracellular vesicles released by human neutrophils infected with M. tuberculosis released after only 30 min of infection carried mycobacterial antigens and pathogen-associated molecular patterns, and we identified 15 mycobacterial proteins that were consistently found in high concentrations in extracellular vesicles released by human neutrophils infected with M. tuberculosis; these proteins contain epitopes for CD4 T-cell activation. We found that extracellular vesicles released by human neutrophils infected with M. tuberculosis increased the expression of the costimulatory molecule CD80 and of the coinhibitory molecule PD-L1 on immature monocyte-derived dendritic cells. We also found that immature and mature dendritic cells treated with extracellular vesicles released by human neutrophils infected with M. tuberculosis were able to induce IFN-γ production by autologous M. tuberculosis antigen-specific CD4 T cells, indicating that these extracellular vesicles acted as antigen carriers and transferred mycobacterial proteins to the antigen-presenting cells. Our results provide evidence that extracellular vesicles released by human neutrophils infected with M. tuberculosis participate in the activation of the adaptive immune response against M. tuberculosis.


Subject(s)
Extracellular Vesicles , Mycobacterium tuberculosis , Tuberculosis , Humans , Th1 Cells , Neutrophils , Monocytes , Dendritic Cells
5.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558035

ABSTRACT

Protozoan parasites, such as Giardia lamblia and Trichomonas vaginalis, cause the most prevalent infections in humans in developing countries and provoke significant morbidity and mortality in endemic countries. Despite its side-effects, metronidazole is still the drug of choice as a giardiacidal and trichomonacidal tissue-active agent. However, the emergence of metronidazole resistance and its evolved strategies of parasites to evade innate host defenses have hindered the identification and development of new therapeutic strategies against these parasites. Here, we tested five synthesized benzimidazole derivatives as possible drugs for treating giardiasis and trichomoniasis, probing the bifunctional enzyme glucose 6-phosphate dehydrogenase::6-phosphogluconolactone from G. lamblia (GlG6PD::6PGL) and T. vaginalis (TvG6PD::6PGL) as a drug target. The investigated benzimidazole derivatives were H-B2M1, H-B2M2, H2N-BZM6, O2N-BZM7, and O2N-BZM9. The recombinant enzymes were used in inhibition assays, and in silico computational predictions and spectroscopic studies were applied to follow the structural alteration of the enzymes and identify the possible mechanism of inhibition. We identified two potent benzimidazole compounds (O2N-BZM7 and O2N-BZM9), which are capable of inhibiting both protozoan G6PD::6PGL enzymes and in vitro assays with these parasites, showing that these compounds also affect their viability. These results demonstrate that other therapeutic targets of the compounds are the enzymes GlG6PD::6PGL and TvG6PD::6PGL, which contribute to their antiparasitic effect and their possible use in antigiardial and trichomonacidal therapies.


Subject(s)
Antiprotozoal Agents , Giardia lamblia , Parasites , Trichomonas vaginalis , Animals , Humans , Metronidazole/pharmacology , Antiparasitic Agents/pharmacology , Benzimidazoles/pharmacology , Antiprotozoal Agents/pharmacology
6.
Membranes (Basel) ; 12(7)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35877846

ABSTRACT

Liposomes are artificial models of cellular membranes that are used as delivery systems for genes, drugs and protein antigens. We have previously used them to study the antigenic properties of their phospholipids. Here, we used them to induce the production of IgG anti-non-bilayer phospholipid arrangements (NPAs) antibodies in mice; these antibodies cause cell lysis and trigger a lupus-like disease in mice. We studied the mechanisms that lead to the production of these antibodies, and provide evidence that NK1.1+, CD4+ T cells respond to NPA-bearing liposomes and deliver the help required for specific B cell activation and antibody class-switching to IgG. We found increased numbers of IL-4-producing NK1.1+, CD4+ T cells in the secondary lymphoid organs of mice administered with NPAs, and these cells also expressed CD40L, which is required for B cell activation. Additionally, we isolated and purified NK1.1+, CD4+ T cells from spleens and determined that they over-expressed 40 genes, which are key players in inflammatory processes and B cell stimulation and have TRAF6 and UNC39B1 as key nodes in their network. These results show that liposomes are membrane models that can be used to analyze the immunogenicity of lipids.

7.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208965

ABSTRACT

Trichomoniasis is a sexually transmitted disease with a high incidence worldwide, affecting 270 million people. Despite the existence of a catalog of available drugs to combat this infection, their extensive use promotes the appearance of resistant Trichomonas vaginalis (T. vaginalis), and some side effects in treated people, which are reasons why it is necessary to find new alternatives to combat this infection. In this study, we investigated the impact of an in-house library comprising 55 compounds on the activity of the fused T. vaginalis G6PD::6PGL (TvG6PD::6PGL) protein, a protein mediating the first reaction step of the pentose phosphate pathway (PPP), a crucial pathway involved in the parasite's energy production. We found four compounds: JMM-3, CNZ-3, CNZ-17, and MCC-7, which inhibited the TvG6PD::6PGL protein by more than 50%. Furthermore, we determined the IC50, the inactivation constants, and the type of inhibition. Our results showed that these inhibitors induced catalytic function loss of the TvG6PD::6PGL enzyme by altering its secondary and tertiary structures. Finally, molecular docking was performed for the best inhibitors, JMM-3 and MCC-7. All our findings demonstrate the potential role of these selected hit compounds as TvG6PD::6PGL enzyme selective inhibitors.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins , Enzyme Inhibitors/chemistry , Glucosephosphate Dehydrogenase , Molecular Docking Simulation , Trichomonas vaginalis/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Glucosephosphate Dehydrogenase/chemistry , Kinetics
8.
Int J Mol Sci ; 24(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36613783

ABSTRACT

Chagas disease is caused by Trypanosoma cruzi and represents a major public health problem, which is endemic in Latin America and emerging in the rest of the world. The two drugs that are currently available for its treatment, Benznidazole and Nifurtimox, are partially effective in the chronic phase of the disease. In this study, we designed and synthesized the benzyl ester of N-isopropyl oxamic acid (B-NIPOx), which is a non-polar molecule that crosses cell membranes. B-NIPOx is cleaved inside the parasite by carboxylesterases, releasing benzyl alcohol (a molecule with antimicrobial activity), and NIPOx, which is an inhibitor of α-hydroxy acid dehydrogenase isozyme II (HADH-II), a key enzyme in T. cruzi metabolism. We evaluated B-NIPOx cytotoxicity, its toxicity in mice, and its inhibitory activity on purified HADH-II and on T. cruzi homogenates. We then evaluated the trypanocidal activity of B-NIPOx in vitro and in vivo and its effect in the intestine of T. cruzi-infected mice. We found that B-NIPOx had higher trypanocidal activity on epimastigotes and trypomastigotes than Benznidazole and Nifurtimox, that it was more effective to reduce blood parasitemia and amastigote nests in infected mice, and that, in contrast to the reference drugs, it prevented the development of Chagasic enteropathy.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Mice , Animals , Nifurtimox/pharmacology , Nifurtimox/therapeutic use , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Isoenzymes
9.
Eur J Neurol ; 29(3): 855-864, 2022 03.
Article in English | MEDLINE | ID: mdl-34779542

ABSTRACT

BACKGROUND: Omega-3 long chain polyunsaturated fatty acids (LCPUFA) reduce circulating cytokines produced by monocytes. Nevertheless, whether the omega-3 LCPUFA regulate the monocytes and their cytokines in Duchenne muscular dystrophy (DMD) is unknown. The aim of this study was to evaluate whether circulating pro-inflammatory monocytes are increased and whether omega-3 LCPUFA selectively suppress these monocytes and their cytokines in patients with DMD. METHODS: This was a double-blind, randomized, placebo-controlled pilot study carried out in patients with DMD supplemented with omega-3 LCPUFA (n = 6) or sunflower oils (placebo, n = 6) for 6 months. Monocytes and their cytokines were measured at baseline and after 1, 2, 3, and 6 months of supplementation. RESULTS: The anti-inflammatory monocytes (median, [95% CI]) are increased at month 3 (-0.46 [-13.5-9.5] vs. 8.4 [5.5-12.5], p = 0.05) in the omega-3 LCPUFA group compared with the placebo group. The pro-inflammatory monocytes (-5.7 [-63.8-114.1] vs. -51.9 [-91.2 to -25.4], p = 0.026 and -16.4 [-50.8-50.6] vs. -57.9 [-86.9 to -18.5], p = 0.045 at months 3 and 6, respectively) and their cytokine interleukin 6 (-11.9 [-93.5-148.9] vs. -64.7 [-77.8 to -42.6], p = 0.019 at month 6) decreased in the omega-3 LCPUFA group compared with the placebo group. Pro-inflammatory monocytes decreased and anti-inflammatory monocytes were augmented (p < 0.05) during the 6 months of supplementation with omega-3 LCPUFA. CONCLUSIONS: This pilot study suggests that supplementation with omega-3 LCPUFA could have a selective reductive effect on pro-inflammatory monocytes and their cytokines in patients with DMD. These findings also support the performance of studies in a significant population to explore the role of omega-3 LCPUFA on monocyte populations and their cytokines in patients with DMD. This research was registered at clinicaltrials.gov (NCT018264229).


Subject(s)
Fatty Acids, Omega-3 , Muscular Dystrophy, Duchenne , Dietary Supplements , Double-Blind Method , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Humans , Monocytes , Muscular Dystrophy, Duchenne/drug therapy , Pilot Projects
10.
Genes (Basel) ; 12(9)2021 08 27.
Article in English | MEDLINE | ID: mdl-34573317

ABSTRACT

Gliomas are heterogeneous, solid, and intracranial tumors that originate from glial cells. Malignant cells from the tumor undergo metabolic alterations to obtain the energy required for proliferation and the invasion of the cerebral parenchyma. The alterations in the expression of the genes related to the metabolic pathways can be detected in biopsies of gliomas of different CNS WHO grades. In this study, we evaluated the expression of 16 candidate reference genes in the HMC3 microglia cell line. Then, statistical algorithms such as BestKeeper, the comparative ΔCT method, geNorm, NormFinder, and RefFinder were applied to obtain the genes most suitable to be considered as references for measuring the levels of expression in glioma samples. The results show that PKM and TPI1 are two novel genes suitable for genic expression studies on gliomas. Finally, we analyzed the expression of genes involved in metabolic pathways in clinical samples of brain gliomas of different CNS WHO grades. RT-qPCR analysis showed that in CNS WHO grade 3 and 4 gliomas, the expression levels of HK1, PFKM, GAPDH, G6PD, PGD1, IDH1, FASN, ACACA, and ELOVL2 were higher than those of CNS WHO grade 1 and 2 glioma biopsies. Hence, our results suggest that reference genes from metabolic pathways have different expression profiles depending on the stratification of gliomas and constitute a potential model for studying the development of this type of tumor and the search for molecular targets to treat gliomas.


Subject(s)
Real-Time Polymerase Chain Reaction , Reference Standards
11.
Molecules ; 26(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34443540

ABSTRACT

Helicobacter pylori (H. pylori) is a pathogen that can remain in the stomach of an infected person for their entire life. As a result, this leads to the development of severe gastric diseases such as gastric cancer. In addition, current therapies have several problems including antibiotics resistance. Therefore, new practical options to eliminate this bacterium, and its induced affections, are required to avoid morbidity and mortality worldwide. One strategy in the search for new drugs is to detect compounds that inhibit a limiting step in a central metabolic pathway of the pathogen of interest. In this work, we tested 55 compounds to gain insights into their possible use as new inhibitory drugs of H. pylori glucose-6-phosphate dehydrogenase (HpG6PD) activity. The compounds YGC-1; MGD-1, MGD-2; TDA-1; and JMM-3 with their respective scaffold 1,3-thiazolidine-2,4-dione; 1H-benzimidazole; 1,3-benzoxazole, morpholine, and biphenylcarbonitrile showed the best inhibitory activity (IC50 = 310, 465, 340, 204 and 304 µM, respectively). We then modeled the HpG6PD protein by homology modeling to conduct an in silico study of the chemical compounds and discovers its possible interactions with the HpG6PD enzyme. We found that compounds can be internalized at the NADP+ catalytic binding site. Hence, they probably exert a competitive inhibitory effect with NADP+ and a non-competitive or uncompetitive effect with G6P, that of the compounds binding far from the enzyme's active site. Based on these findings, the tested compounds inhibiting HpG6PD represent promising novel drug candidates against H. pylori.


Subject(s)
Computer Simulation , Enzyme Inhibitors/pharmacology , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Helicobacter pylori/enzymology , Genetic Vectors/metabolism , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/metabolism , Helicobacter pylori/drug effects , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Recombinant Proteins/isolation & purification , Structural Homology, Protein
12.
Scand J Immunol ; 93(3): e13002, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33247472

ABSTRACT

Non-bilayer phospholipids arrangements (NPAs) are transient molecular associations different from lipid bilayers. When they become stable, they can trigger a disease in mice resembling human lupus, which is mainly characterized by the production of anti-NPA IgG antibodies. NPAs are stabilized on liposomes or cell bilayers by the drugs procainamide or chlorpromazine, which produce drug-induced lupus in humans. Here, we evaluated the participation of the TH 2 response, through its hallmark cytokine IL-4, on the development of the lupus-like disease in mice. Wild-type or IL-4 knockout BALB/c mice received liposomes bearing drug-induced NPAs, the drugs alone, or an anti-NPA monoclonal antibody (H308) to induce the lupus-like disease (the last two procedures stabilize NPAs on mice cells). IL-4 KO mice showed minor disease manifestations, compared to wild-type mice, with decreased production of anti-NPA IgG antibodies, no anti-cardiolipin, anti-histones and anticoagulant antibodies, and no kidney or skin lesions. In these mice, H308 was the only inducer of anti-NPA IgG antibodies. These findings indicate that IL-4 has a central role in the development of the murine lupus-like disease induced by NPA stabilization.


Subject(s)
Interleukin-4/genetics , Interleukin-4/immunology , Lupus Erythematosus, Systemic/immunology , Phospholipids/immunology , Th2 Cells/immunology , Animals , Antibodies, Monoclonal/immunology , Autoantibodies/immunology , Disease Models, Animal , Female , Immunoglobulin G/immunology , Lipid Bilayers/metabolism , Lupus Erythematosus, Systemic/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout
13.
Biochem Biophys Res Commun ; 509(1): 275-280, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30581006

ABSTRACT

Non-bilayer phospholipid arrangements (NPA) are lipid associations different from the bilayer, formed by the interactions of conic anionic lipids and divalent cations that produce an inverted micelle which is inserted between the lipid layers, so the polar heads of the outer lipids spread and expose new antigens. Since these structures are transient, they are not immunogenic, but if they are stabilized by drugs, such as chlorpromazine, they become immunogenic and induce anti-NPA antibodies that trigger a lupus-like disease in mice. Chloroquine is a drug used for the treatment of lupus; chloroquine has a quinoline ring and two positive charges that interact with conic anionic lipids and prevent or revert the formation of NPA. However, the polyamine spermidine is more effective, since it has three positive charges and interacts with more lipids, but polyamines cannot be used as drugs, because they are highly toxic. Here we report the design and synthesis of Lupresan, an analogous of chloroquine with its quinoline ring but with three positive charges. Lupresan is more effective in preventing or reverting the formation of NPA than chloroquine or spermidine, and as a consequence, it decreased auto-antibody titers and healed the malar rash in mice with lupus to a greater extent than chloroquine. A drug as Lupresan could be used for the treatment of human lupus.


Subject(s)
Antibodies, Antiphospholipid/immunology , Lupus Erythematosus, Systemic/drug therapy , Phospholipids/immunology , Animals , Antimalarials/therapeutic use , Cell Line , Chloroquine/therapeutic use , Disease Models, Animal , Drug Discovery , Female , HEK293 Cells , Humans , Lupus Erythematosus, Systemic/immunology , Mice , Mice, Inbred BALB C , Models, Molecular
14.
Front Immunol ; 9: 272, 2018.
Article in English | MEDLINE | ID: mdl-29520273

ABSTRACT

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100-1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-ß, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with wortmannin in these cells. In conclusion, our results demonstrate that neutrophils produce different EVs in response to diverse activators, and that EV-TB activate macrophages and promote the clearance of intracellular Mtb through early superoxide anion production and autophagy induction, which is a novel role for neutrophil-derived EVs in the immune response to Mtb.


Subject(s)
Extracellular Vesicles/metabolism , Macrophages/physiology , Mycobacterium tuberculosis/physiology , Neutrophils/immunology , Tuberculosis/immunology , Autophagy , Cell Differentiation , Cell Survival , Cells, Cultured , Cytokines/metabolism , Humans , Intracellular Space , Macrophage Activation , Microtubule-Associated Proteins/metabolism , Neutrophils/microbiology , Protein Transport
16.
J Immunol Res ; 2017: 8751642, 2017.
Article in English | MEDLINE | ID: mdl-29349090

ABSTRACT

Systemic lupus erythematosus (SLE) is characterized by deregulated activation of T and B cells, autoantibody production, and consequent formation of immune complexes. Liposomes with nonbilayer phospholipid arrangements (NPA), induced by chlorpromazine, procainamide, or manganese, provoke a disease resembling human lupus when administered to mice. These mice produce anti-NPA IgM and IgG antibodies and exhibit an increased number of TLR-expressing spleen cells and a modified gene expression associated with TICAM1-dependent TLR-4 signaling (including IFNA1 and IFNA2) and complement activation. Additionally, they showed a diminished gene expression related to apoptosis and NK cell activation. We hypothesized that such gene expression may be affected by miRNAs and so miRNA expression was studied. Twelve deregulated miRNAs were found. Six of them were common to the three lupus-like models. Their validation by qRT-PCR and TaqMan probes, including miR-342-3p, revealed that miR-155-5p and miR-200a-3p expression was statistically significant. Currently described functions for these miRNAs in autoimmune diseases such as SLE reveal their participation in inflammation, interferon production, germinal center responses, and antibody maturation. Taking into account these findings, we propose miR-155-5p and miR-200a-3p, together with the anti-NPA antibodies, as key players in the murine lupus-like models and possible biomarkers of the human SLE.


Subject(s)
Inflammation/genetics , Killer Cells, Natural/immunology , Lupus Erythematosus, Systemic/genetics , MicroRNAs/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Antibody Formation/genetics , Chlorpromazine/chemistry , Disease Models, Animal , Female , Humans , Interferon-alpha/metabolism , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Phospholipids/chemistry , Phospholipids/immunology , Signal Transduction , Toll-Like Receptor 4/metabolism
17.
Front Immunol ; 7: 396, 2016.
Article in English | MEDLINE | ID: mdl-27746783

ABSTRACT

Anti-lipid IgG antibodies are produced in some mycobacterial infections and in certain autoimmune diseases [such as anti-phospholipid syndrome, systemic lupus erythematosus (SLE)]. However, few studies have addressed the B cell responses underlying the production of these immunoglobulins. Anti-lipid IgG antibodies are consistently found in a murine model resembling human lupus induced by chlorpromazine-stabilized non-bilayer phospholipid arrangements (NPA). NPA are transitory lipid associations found in the membranes of most cells; when NPA are stabilized they can become immunogenic and induce specific IgG antibodies, which appear to be involved in the development of the mouse model of lupus. Of note, anti-NPA antibodies are also detected in patients with SLE and leprosy. We used this model of lupus to investigate in vivo the cellular mechanisms that lead to the production of anti-lipid, class-switched IgG antibodies. In this murine lupus model, we found plasma cells (Gr1-, CD19-, CD138+) producing NPA-specific IgGs in the draining lymph nodes, the spleen, and the bone marrow. We also found a significant number of germinal center B cells (IgD-, CD19+, PNA+) specific for NPA in the draining lymph nodes and the spleen, and we identified in situ the presence of NPA in these germinal centers. By contrast, very few NPA-specific, extrafollicular reaction B cells (B220+, Blimp1+) were found. Moreover, when assessing the anti-NPA IgG antibodies produced during the experimental protocol, we found that the affinity of these antibodies progressively increased over time. Altogether, our data indicate that, in this murine model resembling human lupus, B cells produce anti-NPA IgG antibodies mainly via germinal centers.

18.
J Immunol Res ; 2015: 369462, 2015.
Article in English | MEDLINE | ID: mdl-26568960

ABSTRACT

Systemic lupus erythematosus is characterized by dysregulated activation of T and B cells and autoantibodies to nuclear antigens and, in some cases, lipid antigens. Liposomes with nonbilayer phospholipid arrangements induce a disease resembling human lupus in mice, including IgM and IgG antibodies against nonbilayer phospholipid arrangements. As the effect of these liposomes on the innate immune response is unknown and innate immune system activation is necessary for efficient antibody formation, we evaluated the effect of these liposomes on Toll-like receptor (TLR) signaling, cytokine production, proinflammatory gene expression, and T, NKT, dendritic, and B cells. Liposomes induce TLR-4- and, to a lesser extent, TLR-2/TLR-6-dependent signaling in TLR-expressing human embryonic kidney (HEK) cells and bone marrow-derived macrophages. Mice with the lupus-like disease had increased serum concentrations of proinflammatory cytokines, C3a and C5a; they also had more TLR-4-expressing splenocytes, a higher expression of genes associated with TRIF-dependent TLR-4-signaling and complement activation, and a lower expression of apoptosis-related genes, compared to healthy mice. The percentage of NKT and the percentage and activation of dendritic and B2 cells were also increased. Thus, TLR-4 and TLR-2/TLR-6 activation by nonbilayer phospholipid arrangements triggers an inflammatory response that could contribute to autoantibody production and the generation of a lupus-like disease in mice.


Subject(s)
Liposomes/pharmacology , Lupus Erythematosus, Systemic/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 6/immunology , Animals , Autoantibodies/biosynthesis , Autoantibodies/blood , Chlorpromazine/pharmacology , Cytokines/biosynthesis , Cytokines/blood , Diglycerides/pharmacology , Disease Models, Animal , Female , Flagellin/pharmacology , Gene Expression Regulation , HEK293 Cells , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/blood , Immunoglobulin M/biosynthesis , Immunoglobulin M/blood , Inflammation , Lipopolysaccharides/pharmacology , Liposomes/chemistry , Lupus Erythematosus, Systemic/chemically induced , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Mice , Mice, Inbred BALB C , Oligopeptides/pharmacology , Phosphatidic Acids/chemistry , Phosphatidic Acids/pharmacology , Phosphatidylcholines/chemistry , Phosphatidylcholines/pharmacology , Phosphatidylserines/chemistry , Phosphatidylserines/pharmacology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/genetics , Toll-Like Receptor 6/agonists , Toll-Like Receptor 6/genetics
19.
Pharmacol Rep ; 67(3): 553-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25933969

ABSTRACT

BACKGROUND: 2,4,5-Trimethoxycinnamic acid (2,4,5-TMC) is the major and non-toxic metabolite of α-asarone, which retains hypocholesterolemic and choleretic activities. We compared the activities of 2,4,5-TMC with those of 2,4-dimethoxycinnamic acid (2,4-DMC), 3,4-DMC and 3,5-DMC, to understand the role of the methoxyls on carbons 2, 4 and 5 on the pharmacologic properties of these compounds. METHODS: The methoxycinnamic acids were administered to high-cholesterol/cholate-fed rats. We measured bile flow, and quantified bile acids, phospholipids and cholesterol in bile, and cholesterol and cholesterol-lipoproteins in serum. The inhibition of HMG-CoA reductase by the methoxycinnamic acids was evaluated in vitro. RESULTS: The four methoxycinnamic acids decreased serum cholesterol, without affecting the concentration of HDL-cholesterol. 2,4,5-TMC produced the highest decrease in LDL-cholesterol, 73.5%, which exceeds the range of statins (20-40%), and produced the highest inhibition of the activity of HMG-CoA reductase. 3,4-DMC produced the highest increase in bile flow, bile acids and phospholipids concentrations, and reduction in bile cholesterol, which led to a decrease in the biliary cholesterol saturation index. CONCLUSIONS: 2,4,5-TMC (which has three methoxyls) had the highest hypocholesterolemic activity, while 3,4-DMC, which lacks the methoxyl in carbon 2 but conserves the two other methoxyls in an adjacent position, had the highest choleretic activity and a probable cholelitholytic activity. In methoxycinnamic acids with two methoxyls in non-adjacent positions (2,4-DMC and 3,5-DMC), the hypocholesterolemic and choleretic activities were not as evident. 2,4,5-TMC and 3,4-DMC, which did not cause liver damage during the treatment period, should be further explored as a hypocholesterolemic and choleretic compounds in humans.


Subject(s)
Anticholesteremic Agents/therapeutic use , Cholagogues and Choleretics/therapeutic use , Cholates/adverse effects , Cholesterol, Dietary/adverse effects , Cinnamates/therapeutic use , Hypercholesterolemia/drug therapy , Animals , Cholates/administration & dosage , Cholesterol, Dietary/administration & dosage , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cinnamates/chemistry , Hypercholesterolemia/blood , Hypercholesterolemia/chemically induced , Male , Rats , Rats, Wistar
20.
BMC Pharmacol Toxicol ; 16: 10, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25896924

ABSTRACT

BACKGROUND: Chagas disease, which is caused by Trypanosoma cruzi, is a major health problem in Latin America, and there are currently no drugs for the effective treatment of this disease. The energy metabolism of T. cruzi is an attractive target for drug design, and we previously reported that inhibitors of α-hydroxy acid dehydrogenase (HADH)-isozyme II exhibit trypanocidal activity. N-Propyl oxamate (NPOx) is an inhibitor of HADH-isozyme II, and its non-polar ethyl ester (Et-NPOx) is cytotoxic to T. cruzi. A new derivative of NPOx has been developed in this study with higher trypanocidal activity, which could be used for the treatment of Chagas disease. METHODS: The benzyl ester of NPOx (B-NPOx) was synthesized and its activity evaluated towards epimastigotes and bloodstream trypomastigotes (in vitro), as well as mice infected with T. cruzi (in vivo). The activity of B-NPOx was also compared with those of Et-NPOx, benznidazole (Bz) and nifurtimox (Nx). NINOA, Miguz, Compostela, Nayarit and INC-5 T. cruzi strains were used in this study. RESULTS: Polar NPOx did not penetrate the parasites and exhibited no trypanocidal activity. In contrast, the hydrophobic ester B-NPOx exhibited trypanocidal activity in vitro and in vivo. B-NPOx exhibited higher trypanocidal activity than Et-NPOx, Bz and Nx towards all five of the T. cruzi strains. The increased activity of B-NPOx was attributed to its hydrolysis inside the parasites to give NPOx and benzyl alcohol, which is an antimicrobial compound with trypanocidal effects. B-NPOx was also effective against two strains of T. cruzi that are resistant to Bz and Nx. CONCLUSION: B-NPOx exhibited higher in vitro (2- to 14.8-fold) and in vivo (2.2- to 4.5-fold) trypanocidal activity towards T. cruzi than Et-NPOx. B-NPOx also exhibited higher in vitro (2- to 24-fold) and in vivo (1.9- to 15-fold) trypanocidal activity than Bz and Nx. B-NPOx is more lipophilic than Et-NPOx, allowing for better penetration into T. cruzi parasites, where the enzymatic cleavage of B-NPOx would give NPOx and benzyl alcohol, which are potent trypanocidal agents. Taken together with its low toxicity, these results suggest that B-NPOx could be used as a potent prodrug for the treatment of Chagas disease.


Subject(s)
Chagas Disease/drug therapy , Esters/chemical synthesis , Oxamic Acid/analogs & derivatives , Prodrugs/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Alcohol Oxidoreductases/antagonists & inhibitors , Animals , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Isoenzymes/antagonists & inhibitors , Male , Mice , Nifurtimox/pharmacology , Nitroimidazoles/pharmacology , Oxamic Acid/chemical synthesis , Oxamic Acid/pharmacology , Oxamic Acid/therapeutic use , Prodrugs/chemical synthesis , Prodrugs/therapeutic use , Prodrugs/toxicity , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/toxicity , Trypanosoma cruzi/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...