Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Infect Dev Ctries ; 18(8): 1196-1203, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39288391

ABSTRACT

INTRODUCTION: COVID-19, an emerging infectious disease caused by SARS-CoV-2, continues to be a global public health threat. The development of a colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) can extend the availability of simple, reliable molecular tests for the rapid detection of COVID-19. METHODOLOGY: The RT-LAMP assay was developed using a new primer set targeting a portion of SARS-CoV-2 orf8. The method was validated at 63 ºC for 60 minutes with naked-eye visualization of the color change. The clinical performance was compared to a real-time reverse transcription-polymerase chain reaction (rtRT-PCR) using 273 RNA samples extracted from nasopharyngeal swab specimens. RESULTS: The developed RT-LAMP was specific to SARS-CoV-2 with a limit of detection at 15 RNA copies per reaction. The assay demonstrated diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 90.48% (95% CI: 86.36-93.68%), 87.00% (95% CI: 81.53-91.33%), 100% (95% CI: 95.07-100%), 100% (95% CI: not available), and 73.74% (95% CI: 66.22-80.07%), respectively, compared to the rtRT-PCR. The greatest sensitivity of 98.03% (95% CI: 94.34-99.59%) was demonstrated in samples with the cycle threshold (Ct) values < 30 cycles. CONCLUSIONS: The RT-LAMP method in this study showed good performance. The assay can increase the scope of laboratory testing for rapidly detecting SARS-CoV-2 in Thailand. Due to a decrease in COVID-19 cases, its application is beneficial when commercial alternatives are unavailable.


Subject(s)
COVID-19 , Colorimetry , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Sensitivity and Specificity , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Nucleic Acid Amplification Techniques/methods , Colorimetry/methods , Thailand , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , RNA, Viral/analysis , RNA, Viral/isolation & purification , COVID-19 Nucleic Acid Testing/methods , Nasopharynx/virology
2.
Cureus ; 16(2): e54447, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38510857

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19) continues to be a global health threat and is a public health issue in Thailand and other countries. The extensive cross-border between Thailand and Myanmar is considered to be at a potentially high risk for COVID-19 distribution in this region. In this instance, simple and cost-effective tests for rapid and early detection of COVID-19 would be useful for effective patient management and control of the disease. METHODS: This study was conducted at Mae Sot Hospital on the border of Thailand-Myanmar to evaluate the diagnostic performance of a simple colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay developed recently for the rapid detection of SARS-CoV-2. Nasopharyngeal specimens were routinely collected and processed through automated nucleic acid extraction followed by real-time reverse transcription-polymerase chain reaction (rRT-PCR) using the Molaccu® COVID-19 Detection Kit. The RT-LAMP assay was further performed on remnant RNA samples, and the visual results were compared to those of rRT-PCR as a reference. RESULTS: Of the 727 samples tested, the RT-LAMP assay could detect 322 out of 374 samples positive for SARS-CoV-2 by rRT-PCR with 100% (n = 353/353) negative agreement. The comparative analysis demonstrated the overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the RT-LAMP at 92.85% (n = 675/727, 95% CI: 90.73-94.61), 86.10% (n = 322/374, 95% CI: 82.17-89.44), 100% (n = 353/353, 95% CI: 98.96-100), 100% (n = 322/322, 95% CI: 98.86-100), and 87.16% (n = 353/405, 95% CI: 84.06-89.73), respectively. CONCLUSION: This RT-LAMP assay showed good diagnostic performance in the hospital setting. It can increase laboratory capacity for rapid SARS-CoV-2 testing and has the potential for use as an alternative or a backup assay at the point of need, especially where alternatives are unavailable for any reason, such as a decline in COVID-19 cases.

3.
Article in English | MEDLINE | ID: mdl-34878043

ABSTRACT

Extensive drug-resistant tuberculosis (XDR-TB) is highly life threatening and its diagnosis is usually difficult and time-consuming. Here we present the first two cases of XDR and pre-XDR-TB diagnosed in 2018 on the Thailand-Myanmar border, more specifically in Tak province. Rapid detection of XDR-TB was performed by loop-mediated isothermal amplification (LAMP), Xpert MTB/RIF, and line probe assays. Mutation analyses targeting rpoB, katG, inhA, gyrA and rrs genes showed an association with drug-resistant phenotypes, except for rifampicin resistance. Spoligotyping revealed uncommon Beijing and T2 genotypes and the analysis of M. tuberculosis interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) showed the presence of more polymorphisms. This report highlights the importance of the early detection of drug-resistant tuberculosis by molecular tests followed by phenotyping assays. Based on the up-to-date definition of XDR- and pre-XDR-TB, the susceptibility testing for bedaquiline and linezolid is required and the two reported cases may correspond to putative XDR-TB.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Pharmaceutical Preparations , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/diagnosis , Extensively Drug-Resistant Tuberculosis/drug therapy , Genotype , Humans , Microbial Sensitivity Tests , Mutation , Myanmar , Mycobacterium tuberculosis/genetics , Thailand , Tuberculosis, Multidrug-Resistant/diagnosis
4.
Article in English | MEDLINE | ID: mdl-32520211

ABSTRACT

Simple, low-cost and effective diagnostic tests for tuberculosis (TB) are needed especially in TB-high burden settings. The present study evaluated the performance of an in-house loop-mediated isothermal amplification (LAMP) for diagnosing TB by comparing it to Xpert MTB/RIF, microscopy and culture. In Thailand, a total of 204 excess sputum samples volume after the processing of cultures were used for Mycobacterium tuberculosis (MTB) detection by Xpert MTB/RIF and LAMP. Based on culture results as the gold standard, the overall sensitivity of LAMP and Xpert MTB/RIF were 82.1% (126/153; 95% confidential interval [CI]: 75.4-88.98%) and 86.9 % (133/153; 95% CI: 80.5-90.8%) respectively, and the specificity of both tests was 100% (51/51; 95% CI: 93.0-100.0%). In comparison with Xpert MTB/RIF, the sensitivity and specificity of LAMP were 94.7% (126/133; 95% CI: 89.5-97.9%), and 100.0% (73/73; 95% CI: 94.9-100.0%), respectively. The average threshold cycle (Ct) of Xpert MTB/RIF detection for positive and negative LAMP results was statistically different, of 18.4 and 27.0, respectively (p < 0.05). In comparison with the acid-fast staining technique, and analyzing LAMP and Xpert MTB/RIF in smear-negative/culture-positive specimens, there was an increase of the detection rate by 47.7% (21/44) and 54.6% (24/44). The diagnostic sensitivity and specificity of LAMP appeared to be comparable to those of Xpert MTB/RIF. We claim that this LAMP has potential to provide a sensitive diagnostic test for the rapid TB diagnosis. It allowed a fast detection of MTB before the cultures and it could be used in resource-limited laboratory settings.


Subject(s)
Mycobacterium tuberculosis/isolation & purification , Sputum/microbiology , Tuberculosis/diagnosis , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Diagnostic Tests, Routine , Humans , Molecular Diagnostic Techniques/methods , Mycobacterium tuberculosis/genetics , Polymerase Chain Reaction , Sensitivity and Specificity , Thailand
5.
Sci Rep ; 10(1): 4009, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132604

ABSTRACT

Many microbial species have been recognized as enteropathogens for humans. Here, we predicted the causative agents of acute diarrhea using data from multiplex quantitative PCR (qPCR) assays targeting 19 enteropathogens. For this, a case-control study was conducted at eight hospitals in Thailand. Stool samples and clinical data were collected from 370 hospitalized patients with acute diarrhea and 370 non-diarrheal controls. Multiple enteropathogens were detected in 75.7% and 13.0% of diarrheal stool samples using multiplex qPCR and bacterial culture methods, respectively. Asymptomatic carriers of enteropathogens were found among 87.8% and 45.7% of individuals by qPCR and culture methods, respectively. These results suggested the complexity of identifying causative agents of diarrhea. An analysis using the quantification cut-off values for clinical relevance drastically reduced pathogen-positive stool samples in control subjects from 87.8% to 0.5%, whereas 48.9% of the diarrheal stool samples were positive for any of the 11 pathogens. Among others, rotavirus, norovirus GII, Shigella/EIEC, and Campylobacter were strongly associated with acute diarrhea (P-value < 0.001). Characteristic clinical symptoms, epidemic periods, and age-related susceptibility to infection were observed for some enteropathogens. Investigations based on qPCR approaches covering a broad array of enteropathogens might thus improve our understanding of diarrheal disease etiology and epidemiological trends.


Subject(s)
Bacteria , Diarrhea/microbiology , Feces/microbiology , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Acute Disease , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Diarrhea/epidemiology , Female , Humans , Male , Thailand/epidemiology
6.
Korean J Parasitol ; 49(1): 33-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21461266

ABSTRACT

Prompt and accurate diagnosis of malaria is the key to prevent disease morbidity and mortality. This study was carried out to evaluate diagnostic performance of 3 commercial rapid detection tests (RDTs), i.e., Malaria Antigen Pf/Pan™, Malaria Ag-Pf™, and Malaria Ag-Pv™ tests, in comparison with the microscopic and PCR methods. A total of 460 blood samples microscopically positive for Plasmodium falciparum (211 samples), P. vivax (218), mixed with P. falciparum and P. vivax (30), or P. ovale (1), and 124 samples of healthy subjects or patients with other fever-related infections, were collected. The sensitivities of Malaria Ag-Pf™ and Malaria Antigen Pf/Pan™ compared with the microscopic method for P. falciparum or P. vivax detection were 97.6% and 99.0%, or 98.6% and 99.0%, respectively. The specificities of Malaria Ag-Pf™, Malaria Ag-Pv™, and Malaria Antigen Pf/Pan™ were 93.3%, 98.8%, and 94.4%, respectively. The sensitivities of Malaria Ag-Pf™, Malaria Antigen Pf/Pan™, and microscopic method, when PCR was used as a reference method for P. falciparum or P. vivax detection were 91.8%, 100%, and 96.7%, or 91.9%, 92.6%, and 97.3%, respectively. The specificities of Malaria Ag-Pf™, Malaria Ag-Pv™, Malaria Antigen Pf/Pan™, and microscopic method were 66.2%, 92.7%, 73.9%, and 78.2%, respectively. Results indicated that the diagnostic performances of all the commercial RDTs are satisfactory for application to malaria diagnosis.


Subject(s)
Diagnostic Techniques and Procedures , Malaria/diagnosis , Plasmodium falciparum/isolation & purification , Antigens, Protozoan/blood , Cross-Sectional Studies , Diagnostic Techniques and Procedures/instrumentation , Endemic Diseases/statistics & numerical data , Humans , Malaria/epidemiology , Malaria/parasitology , Malaria, Vivax , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Reagent Kits, Diagnostic , Thailand/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL