Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(3): e25787, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356542

ABSTRACT

Sugarcane leaf waste, a byproduct of the growing global sugar industry, challenges agricultural waste management. This study explores its potential for methane production via anaerobic digestion. A microbial pre-hydrolysis, using lignocellulose-degrading bacteria, enhanced soluble chemical oxygen demand at an optimal initial substrate concentration of 40 g-volatile solid/L. Comparative analysis with untreated and bioaugmented leaves revealed the pre-hydrolyzed leaves achieved the highest methane production rate (MPR) at 14.0 ± 0.5 mL-CH4/L·d, surpassing others by 1.47 and 1.67 times. Two continuous stirred tank reactors were employed to assess the optimal hydraulic retention time (HRT). Results showed a stable methane production with an HRT of 25 days, yielding high MPRs: 88.70 ± 0.63 mL-CH4/L·d from pre-hydrolyzed sugarcane leaves and 82.57 ± 1.22 mL-CH4/L·d from microbial consortium-augmented leaves. A 25-day HRT fosters high microbial diversity with Bacteroidota, Firmicutes, Chloroflexi, and Verrucomicrobiota dominance, indicating favorable conditions. Conversely, a 20-day HRT results in lower diversity due to unfavorable factors like low pH during organic overloading, leading to increased concentrations of volatile fatty acids and lactic acid, with Firmicutes as the predominant phylum. This study highlights sugarcane leaf waste's potential as a valuable resource for sustainable methane production.

2.
Heliyon ; 10(4): e26378, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390190

ABSTRACT

This study aimed to convert CO2 in biogas into acetic acid using immobilized Clostridium thailandense cells on various support materials, including activated carbon, expanded clay, and coir. Immobilized cells and free cells were evaluated for their CO2 conversion ability into acetic acid using H2 as an electron donor at an H2 to CO2 in biogas ratio of 2:1 (v/v), 30 °C, 150 rpm. Results showed that immobilized cells on activated carbon increased CH4 content to 96.9% (v/v), and acetic acid production to 15.65 mmol/L within 96 h. These values outperformed free cells. The activated carbon-immobilized cells could be reused two times without losing efficacy in the purification of biogas and acetic acid production. This work indicates that using the immobilized cells offers a sustainable approach to biogas upgrading, reducing the environmental footprint of biogas production by increasing its energy content and purity.

3.
Sci Rep ; 13(1): 2968, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36804594

ABSTRACT

Lignocellulosic biomass is a promising substrate for biogas production. However, its recalcitrant structure limits conversion efficiency. This study aims to design a microbial consortium (MC) capable of producing the cellulolytic enzyme and exploring the taxonomic and genetic aspects of lignocellulose degradation. A diverse range of lignocellulolytic bacteria and degrading enzymes from various habitats were enriched for a known KKU-MC1. The KKU-MC1 was found to be abundant in Bacteroidetes (51%), Proteobacteria (29%), Firmicutes (10%), and other phyla (8% unknown, 0.4% unclassified, 0.6% archaea, and the remaining 1% other bacteria with low predominance). Carbohydrate-active enzyme (CAZyme) annotation revealed that the genera Bacteroides, Ruminiclostridium, Enterococcus, and Parabacteroides encoded a diverse set of cellulose and hemicellulose degradation enzymes. Furthermore, the gene families associated with lignin deconstruction were more abundant in the Pseudomonas genera. Subsequently, the effects of MC on methane production from various biomasses were studied in two ways: bioaugmentation and pre-hydrolysis. Methane yield (MY) of pre-hydrolysis cassava bagasse (CB), Napier grass (NG), and sugarcane bagasse (SB) with KKU-MC1 for 5 days improved by 38-56% compared to non-prehydrolysis substrates, while MY of prehydrolysed filter cake (FC) for 15 days improved by 56% compared to raw FC. The MY of CB, NG, and SB (at 4% initial volatile solid concentration (IVC)) with KKU-MC1 augmentation improved by 29-42% compared to the non-augmentation treatment. FC (1% IVC) had 17% higher MY than the non-augmentation treatment. These findings demonstrated that KKU-MC1 released the cellulolytic enzyme capable of decomposing various lignocellulosic biomasses, resulting in increased biogas production.


Subject(s)
Cellulose , Saccharum , Cellulose/metabolism , Microbial Consortia , Biofuels/microbiology , Saccharum/metabolism , Lignin/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteroidetes/genetics , Bacteroidetes/metabolism , Methane/metabolism , Biomass
4.
Microbiome ; 10(1): 117, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35918706

ABSTRACT

BACKGROUND: Carbon fixation through biological methanation has emerged as a promising technology to produce renewable energy in the context of the circular economy. The anaerobic digestion microbiome is the fundamental biological system operating biogas upgrading and is paramount in power-to-gas conversion. Carbon dioxide (CO2) methanation is frequently performed by microbiota attached to solid supports generating biofilms. Despite the apparent simplicity of the microbial community involved in biogas upgrading, the dynamics behind most of the interspecies interaction remain obscure. To understand the role of the microbial species in CO2 fixation, the biofilm generated during the biogas upgrading process has been selected as a case study. The present work investigates via genome-centric metagenomics, based on a hybrid Nanopore-Illumina approach the biofilm developed on the diffusion devices of four ex situ biogas upgrading reactors. Moreover, genome-guided metabolic reconstruction and flux balance analysis were used to propose a biological role for the dominant microbes. RESULTS: The combined microbiome was composed of 59 species, with five being dominant (> 70% of total abundance); the metagenome-assembled genomes representing these species were refined to reach a high level of completeness. Genome-guided metabolic analysis appointed Firmicutes sp. GSMM966 as the main responsible for biofilm formation. Additionally, species interactions were investigated considering their co-occurrence in 134 samples, and in terms of metabolic exchanges through flux balance simulation in a simplified medium. Some of the most abundant species (e.g., Limnochordia sp. GSMM975) were widespread (~ 67% of tested experiments), while others (e.g., Methanothermobacter wolfeii GSMM957) had a scattered distribution. Genome-scale metabolic models of the microbial community were built with boundary conditions taken from the biochemical data and showed the presence of a flexible interaction network mainly based on hydrogen and carbon dioxide uptake and formate exchange. CONCLUSIONS: Our work investigated the interplay between five dominant species within the biofilm and showed their importance in a large spectrum of anaerobic biogas reactor samples. Flux balance analysis provided a deeper insight into the potential syntrophic interaction between species, especially Limnochordia sp. GSMM975 and Methanothermobacter wolfeii GSMM957. Finally, it suggested species interactions to be based on formate and amino acids exchanges. Video Abstract.


Subject(s)
Biofuels , Metagenome , Anaerobiosis , Bioreactors , Carbon Dioxide/analysis , Firmicutes/metabolism , Formates , Methane/metabolism , Methanobacteriaceae/genetics , Methanobacteriaceae/metabolism
5.
PeerJ ; 9: e10592, 2021.
Article in English | MEDLINE | ID: mdl-33505799

ABSTRACT

BACKGROUND: Full-scale biogas production from palm oil mill effluent (POME) was inhibited by low pH and highly volatile fatty acid (VFA) accumulation. Three strategies were investigated for recovering the anaerobic digestion (AD) imbalance on biogas production, namely the dilution method (tap water vs. biogas effluent), pH adjustment method (NaOH, NaHCO3, Ca(OH)2, oil palm ash), and bioaugmentation (active methane-producing sludge) method. The highly economical and feasible method was selected and validated in a full-scale application. RESULTS: The inhibited sludge from a full-scale biogas reactor could be recovered within 30-36 days by employing various strategies. Dilution of the inhibited sludge with biogas effluent at a ratio of 8:2, pH adjustment with 0.14% w/v NaOH, and 8.0% w/v oil palm ash were considered to be more economically feasible than other strategies tested (dilution with tap water, or pH adjustment with 0.50% w/v Ca(OH)2, or 1.25% NaHCO3 and bioaugmentation) with a recovery time of 30-36 days. The recovered biogas reactor exhibited a 35-83% higher methane yield than self-recovery, with a significantly increased hydrolysis constant (kH) and specific methanogenic activity (SMA). The population of Clostridium sp., Bacillus sp., and Methanosarcina sp. increased in the recovered sludge. The imbalanced full-scale hybrid cover lagoon reactor was recovered within 15 days by dilution with biogas effluent at a ratio of 8:2 and a better result than the lab-scale test (36 days). CONCLUSION: Dilution of the inhibited sludge with biogas effluent could recover the imbalance of the full-scale POME-biogas reactor with economically feasible and high biogas production performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...