Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 110(6): 2508-2516, 2021 06.
Article in English | MEDLINE | ID: mdl-33515584

ABSTRACT

Forkhead box M1 (FOXM1) is known to play a role in breast cancer progression. FOXM1 inhibition becomes one of the strategies in developing the novel cancer therapy. Recently, thiostrepton has been recognized as a potent FOXM1 inhibitor. To improve its potential, we aimed to develop a nanodelivery system for thiostrepton. Here, liposome-encapsulated thiostrepton (TSLP) was developed. Physiochemical properties were characterized by TEM and dynamic light scattering technique. The biological activities were also evaluated, by cellular internalization, MTT assay, spheroid formation assay and RT-PCR. The result showed that the range sizes of TSLP were 152 ± 2 nm, polydispersity index (PdI) of 0.23 ± 0.02 and zeta potential of -20.2 ± 0.1 mV. As expected, TSLP showed a higher potential in reducing FOXM1 levels in MCF-7 cells than free thiostrepton. Additionally, TSLP significantly improved the efficiently and specificity of thiostrepton in reducing cell viability of MCF-7, but not of the fibroblast (HDFn) cells. Interestingly, TSLP had an ability to induce MCF-7 cell death in both 2D monolayer and 3D spheroid culture. In conclusions, TSLP could possibly be one of the potential developments using nano-delivery system to improve abilities and specificity of thiostrepton in breast cancer cell inhibition and death inducing, with decreasing non-specific toxicity.


Subject(s)
Breast Neoplasms , Thiostrepton , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Female , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Liposomes , Thiostrepton/pharmacology
2.
Oncol Rep ; 42(3): 953-962, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31322278

ABSTRACT

Breast cancer is the most common type of malignancies in women worldwide, and genotoxic chemotherapeutic drugs are effective by causing DNA damage in cancer cells. However, >90% of patients with metastatic cancer are resistant to chemotherapy. The Forkhead box M1 (FOXM1) transcription factor plays a pivotal role in the resistance of breast cancer cells to chemotherapy by promoting DNA damage repair following genotoxic drug treatment. The aim of the present study was to investigate the inhibition of the FOXM1 protein by thiostrepton, a natural antibiotic produced by the Streptomyces species. Experimental studies were designed to examine the effectiveness of thiostrepton in downregulating FOXM1 mRNA expression and activity, leading to senescence and apoptosis of breast cancer cells. The cytotoxicity of thiostrepton in breast cancer was determined using cell viability assay. Additionally, thiostrepton treatment decreased the mRNA expression of cyclin B1 (CCNB1), a downstream target of FOXM1. The present results indicated that thiostrepton inhibited FOXM1 mRNA expression and its effect on CCNB1. Molecular dynamic simulations were performed to study the interactions between FOXM1­DNA and thiostrepton after molecular docking. The results revealed that the possible mechanism underlying the inhibitory effect of thiostrepton on FOXM1 function was by forming a tight complex with the DNA and FOXM1 via its binding domain. Collectively, these results indicated that thiostrepton is a specific and direct inhibitor of the FOXM1 protein in breast cancer. The findings of the present study may lead to the development of novel therapeutic strategies for breast cancer and help overcome resistance to conventional chemotherapeutic drugs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Breast Neoplasms/pathology , Cyclin B1/antagonists & inhibitors , Forkhead Box Protein M1/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Thiostrepton/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Proliferation , Cyclin B1/genetics , Cyclin B1/metabolism , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Female , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Humans , Molecular Docking Simulation , Protein Conformation , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...