Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 10(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921403

ABSTRACT

Several strains of Trichoderma are applied in the field to control plant diseases due to their capacity to suppress fungal pathogens and control plant diseases. Some Trichoderma strains also are able to promote plant growth through the production of indole-3-acetic acid (IAA). In southern Thailand, the local rice variety "Chor Khing" is mainly cultivated in the Songkhla province; it is characterized by slow growth and is susceptible to sheath blight caused by Rhizoctonia solani. Therefore, this research aimed to screen Trichoderma species with the ability to promote plant growth in this rice variety and enact biological control against R. solani. A total of 21 Trichoderma isolates were screened for indole compound production using the Salkowski reagent. The Z2-03 isolate reacted positively to the Salkowski reagent, indicating the production of the indole compound. High-performance liquid chromatography (HPCL) confirmed that Z2-03 produced IAA at 35.58 ± 7.60 µg/mL. The cell-free culture filtrate of the potato dextrose broth (CF) of Z2-03 induced rice germination in rice seeds, yielding root and shoot lengths in cell-free CF-treated rice that were significantly higher than those of the control (distilled water and culture broth alone). Furthermore, inoculation with Trichoderma conidia promoted rice growth and induced a defense response against R. solani during the seedling stage. Trichoderma Z2-03 displayed an antifungal capacity against R. solani, achieving 74.17% inhibition (as measured through dual culture assay) and the production of siderophores on the CAS medium. The pot experiment revealed that inoculation with the Trichoderma sp. Z2-03 conidial suspension increased the number of tillers and the plant height in the "Chor Khing" rice variety, and suppressed the percentage of disease incidence (PDI). The Trichoderma isolate Z2-03 was identified, based on the morphology and molecular properties of ITS, translation elongation factor 1-alpha (tef1-α), and RNA polymerase 2 (rpb2), as Trichoderma breve Z2-03. Our results reveal the ability of T. breve Z2-03 to act as a plant growth promoter, enhancing growth and development in the "Chor Khing" rice variety, as well as a biological control agent through its competition and defense induction mechanism in this rice variety.

2.
J Fungi (Basel) ; 9(7)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37504733

ABSTRACT

The postharvest quality of muskmelon can be affected by fruit rot caused by the fungus Fusarium incarnatum, resulting in loss of quality. The utilization of electrostatic atomized water particles (EAWPs) in agriculture applications has been shown to induce disease resistance in plants. Therefore, in this study, we determined the effect of electrostatic atomized water particles (EAWPs) on the disease resistance of muskmelon fruits against postharvest fruit rot caused by F. incarnatum. EAWPs were applied to muskmelon fruits for 0, 30, 60, and 90 min. EAWP-treated muskmelon fruits were inoculated with F. incarnatum, and disease progress was measured. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) of the chitinase (CmCHI) and ß-1,3-glucanase (CmGLU) genes of Cucumis melo (muskmelon) was performed for EAWP-treated and -untreated muskmelon fruits. The activities of cell-wall-degrading enzymes (CWDEs), chitinase, and ß-1,3-glucanase were also assayed in EAWP-treated and -untreated muskmelon fruits. The results showed that disease progress was limited by EAWP treatment for 30 min prior to pathogen inoculation. Muskmelon fruits treated with EAWPs for 30 min showed an upregulation of CWDE genes, CmCHI and CmGLU, as observed by qRT-PCR, leading to high chitinase and ß-1,3-glucanase activities, as observed through enzyme assays. The results of SEM microscopy revealed that the effect of the crude enzymes of EAWP-treated muskmelon caused morphological changes in F. incarnatum mycelia. Furthermore, treatment with EAWPs preserved postharvest quality in muskmelon, including with regard to texture stiffness and total chlorophyll contents, compared to untreated muskmelon. These results demonstrate that the pretreatment of muskmelon with EAWPs suppresses the development of F. incarnatum in the early stage of infection by regulating gene expression of CWDEs and elevating the activities of CWDEs, while also maintaining postharvest muskmelon quality.

3.
J Fungi (Basel) ; 9(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36836311

ABSTRACT

During 2020-2021, cultivated red-fleshed dragon fruit (Hylocereus polyrhizus) in Phatthalung province, southern Thailand, was infected with canker disease in all stages of growth. Small, circular, sunken, orange cankers first developed on the cladodes of H. polyrhizus and later expanded and became gray scabs with masses of pycnidia. The fungi were isolated using the tissue transplanting method and identified based on the growth of the fungal colony, and the dimensions of the conidia were measured. Their species level was confirmed with the molecular study of multiple DNA sequences, and their pathogenicity was tested using the agar plug method. Morphological characterization and molecular identification of the internal transcribed spacer (ITS), translation elongation factor 1-α (tef1-α) and ß-tubulin (tub) sequences revealed the fungal pathogen to be a new species. It was named Neoscytalidium hylocereum sp. nov. The biota of the new species, N. hylocereum, was deposited in Mycobank, and the species was assigned accession number 838004. The pathogenicity test was performed to fulfil Koch's postulates. N. hylocereum showed sunken orange cankers with a mass of conidia similar to those observed in the field. To our knowledge, this is the first report of H. polyrhizus as a host of the new species N. hylocereum causing stem cankers in Thailand.

4.
Plants (Basel) ; 11(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35214837

ABSTRACT

Red-fleshed dragon fruit (Hylocereus polyrhizus) is commonly cultivated in Thailand, especially in southern Thailand, where the weather favors plant growth and development. In 2021, stem canker of H. polyrhizus was observed in a dragon fruit plantation field in Phatthalung Province, southern Thailand. Small, orange circular spots developed on the stem of H. polyrhizus, which later became gray, and the lesion expanded with a mass of conidia. Scytalidium-like fungus was isolated from infected tissues. Based on morphology and phylogenetic analyses of internal transcribed spacer (ITS), nuclear large subunit (LSU) and ß-tubulin (tub) sequences of fungal isolates, the fungus was identified as Neoscytalidium dimidiatum. Pathogenicity tests revealed that this isolate caused stem canker on the stem of H. polyrhizus, similar to that observed in the field. Knowledge of the diagnosis of plant diseases is an important step for managing plant diseases and therefore, this finding provides basic information for the development of appropriate strategies to manage stem canker disease on H. polyrhizus plants.

5.
J Fungi (Basel) ; 8(2)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35205910

ABSTRACT

Gummy stem blight caused by Stagonosporopsis cucurbitacearum is the most destructive disease of muskmelon cultivation. This study aimed to induce disease resistance against gummy stem blight in muskmelon by Trichoderma asperelloides PSU-P1. This study was arranged into two crops. Spore suspension at a concentration of 1 × 106 spores/mL of T. asperelloides PSU-P1 was applied to muskmelon to investigate gene expression. The expression of PR genes including chitinase (chi) and ß-1,3-glucanase (glu) were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR), and enzyme activity was assayed by the DNS method. The effects of T. asperelloides PSU-P1 on growth, yield, and postharvest quality of muskmelon fruit were measured. A spore suspension at a concentration of 1 × 106 spore/mL of T. asperelloides PSU-P1 and S. cucurbitacearum was applied to muskmelons to determine the reduction in disease severity. The results showed that the expression of chi and glu genes in T. asperelloides PSU-P1-treated muskmelon plants was 7-10-fold higher than that of the control. The enzyme activities of chitinase and ß-1,3-glucanase were 0.15-0.284 and 0.343-0.681 U/mL, respectively, which were higher than those of the control (pathogen alone). Scanning electron microscopy revealed crude metabolites extracted from T. asperelloides PSU-P1-treated muskmelon plants caused wilting and lysis of S. cucurbitacearum hyphae, confirming the activity of cell-wall-degrading enzymes (CWDEs). Application of T. asperelloides PSU-P1 increased fruit weight and fruit width; sweetness and fruit texture were not significantly different among treated muskmelons. Application of T. asperelloides PSU-P1 reduced the disease severity scale of gummy stem blight to 1.10 in both crops, which was significantly lower than that of the control (2.90 and 3.40, respectively). These results revealed that application of T. asperelloides PSU-P1 reduced disease severity against gummy stem blight by overexpressed PR genes and elevated enzyme activity in muskmelon plants.

6.
J Fungi (Basel) ; 7(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807949

ABSTRACT

Soil microorganisms are well studied for their beneficial effects on plant growth and their impact on biocontrol agents. The production of volatile antifungal compounds emitted from soil fungi is considered to be an effective ability that can be applied in biofumigants in the control of plant diseases. A soil fungus, Trichoderma asperelloides TSU1, was isolated from flamingo flower cultivated soil and identified on the basis of the morphology and molecular analysis of the internal transcribed spacer (ITS), rpb2, and tef1-α genes. To test T. asperelloides TSU1-produced volatile organic compounds (VOCs) with antifungal activity, the sealed plate method was used. The VOCs of T. asperelloides TSU1 inhibited the mycelial growth of fungal pathogens that were recently reported as emerging diseases in Thailand, namely, Corynespora cassiicola, Fusarium incarnatum, Neopestalotiopsis clavispora, N. cubana, and Sclerotium rolfsii, with a percentage inhibition range of 38.88-68.33%. Solid-phase microextraction (SPME) was applied to trap VOCs from T. asperelloides TSU1 and tentatively identify them through gas chromatography-mass spectrometry (GC/MS). A total of 17 compounds were detected in the VOCs of T. asperelloides TSU1, and the dominant compounds were identified as fluoro(trinitro)methane (18.192% peak area) and 2-phenylethanol (9.803% peak area). Interestingly, the commercial 2-phenyethanol showed antifungal activity against fungal pathogens that were similar to the VOCs of T. asperelloides TSU1 by bioassay. On the basis of our study's results, T. asperelloides TSU1 isolated from soil displayed antifungal abilities via the production of VOCs responsible for restricting pathogen growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...