Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Foods ; 13(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39272583

ABSTRACT

Pig processing industries have produced large quantities of by-products, which have either been discarded or used to make low-value products. This study aimed to provide recommendations for manufacturing edible oil from pig brains, thereby increasing the value of pork by-products. The experiment compared non-solvent extraction methods, specifically wet rendering and aqueous saline, to a standard solvent extraction method, the Bligh and Dyer method, for extracting oil from pig brains. The yield, color, fatty acid profile, a number of lipid classes, and lipid stability against lipolysis and oxidation of the pig brain oil were comprehensively compared, and the results revealed that these parameters varied depending on the extraction method. The wet rendering process provided the highest extracted oil yield (~13%), followed by the Bligh and Dyer method (~7%) and the aqueous saline method (~2.5%). The Bligh and Dyer method and wet rendering techniques produced a translucent yellow oil; however, an opaque light-brown-red oil was found in the aqueous saline method. The Bligh and Dyer method yielded the oil with the highest phospholipid, cholesterol, carotenoid, tocopherol, and free fatty acid contents (p < 0.05). Although the Bligh and Dyer method recovered the most unsaturated fatty acids, it also recovered more trans-fatty acids. Aqueous saline and wet rendering procedures yielded oil with low FFA levels (<1 g/100 g). The PV of the oil extracted using all methods was <1 meq/kg; however, the Bligh and Dyer method had a significant TBARS content (7.85 mg MDA equivalent/kg) compared to aqueous saline (1.75 mg MDA equivalent/kg) and wet rendering (1.14 mg MDA equivalent/kg) (p < 0.05). FTIR spectra of the pig brain oil revealed the presence of multiple components in varying quantities, as determined by chemical analysis experiments. Given the higher yield and lipid stability and the lower cholesterol and trans-fatty acid content, wet rendering can be regarded as a simple and environmentally friendly method for safely extracting quality edible oil from pig brains, which may play an important role in obtaining financial benefits, nutrition, the zero-waste approach, and increasing the utilization of by-products in the meat industry.

2.
Ultrason Sonochem ; 110: 107037, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39178554

ABSTRACT

This study investigated the formation of conjugates between whey protein isolate (WPI) and green tea extract (GTE) using three methods: redox-pair (R), ultrasound-assisted redox-pair (RU), and ultrasonication (UL). Ultrasonication significantly reduced the reaction time for synthesizing WPI-GTE conjugates compared to the standard R method (p < 0.05). The UL methods had the highest conjugate yield determined by polyphenol binding (p < 0.05). Fourier-transform infrared spectroscopy (FTIR) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the conjugate formation, indicating an increased molecular weight due to protein binding with polyphenols through covalent and non-covalent bonds. Conjugates produced via ultrasonication exhibited enhanced solubility, smaller particle size, better emulsifying capacity, and improved foaming ability compared to those formed using the traditional R method (p < 0.05). However, conjugates from the R method showed higher antioxidant activity, as evidenced by DPPH•and ABTS•+ scavenging activities (p < 0.05). In conclusion, WPI-GTE conjugates created through ultrasonic treatment demonstrate potential as dual-functional ingredients, serving as both antioxidant and emulsifier.


Subject(s)
Plant Extracts , Tea , Whey Proteins , Whey Proteins/chemistry , Tea/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Ultrasonic Waves , Sonication , Solubility , Emulsions , Oxidation-Reduction , Polyphenols/chemistry , Polyphenols/isolation & purification , Particle Size
3.
Foods ; 12(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37297504

ABSTRACT

Salted eggs are normally produced by treating fresh duck eggs with a high salt concentration in order to acquire distinctive features and excellent preservation capabilities as a result of a series of physicochemical changes. This method, however, induces a high salt content in the product. The goal of this research was to create a new way of producing mildly salted duck eggs using ozonized brine salting. The brine was made by dissolving NaCl (26% w/v) in water or ozonized water at a concentration of 50 ng ozone/mL (ozonized brine). Compared to brine, ozonized brine resulted in salted eggs with reduced ultimate salt levels in both albumen and yolk (p < 0.05). The Haugh unit of the salted eggs generated by ozonized brine was similar to that of the brine-made salted egg group (p > 0.05), but the salted egg produced by ozonized brine matured and solidified faster because the yolk index (0.62) was higher than that of the brine (0.55) (p < 0.05). The final pH of salted eggs generated with brine and ozonized brine was not different (p > 0.05). Regardless of the salting method, both salted eggs contained low TVB-N content (<10 mg/100 g). Ozonized brine increased the protein carbonyl content in salted albumen, which may be related to albumen protein aggregation and served as a salt diffusion barrier. However, after boiling the salted egg, the protein carbonyl level was comparable to that of fresh albumen. The TBARS levels of boiled salted albumen prepared with brine and ozonized brine were comparable (p > 0.05), and the value was extremely low (~0.1 mg MDA equivalent/kg). The TBARS value of the salted yolk prepared with brine was higher than that of the salted yolk prepared with ozonized brine (p < 0.05), and both salted yolks showed increased TBARS values after cooking (p < 0.05). The albumen and yolk components appeared to be altered similarly by both brine and ozonized brine, according to the FTIR spectra. Furthermore, the appearance and color of the yolk and albumen in salted eggs prepared with brine and ozonized brine were comparable. Boiled salted albumen produced with ozonized brine had a denser structure with fewer voids. This could be attributed to the final salted egg's lower salt content and lower salt diffusion rate, which were likely caused by protein oxidation and, as a result, aggregation when ozonized brine was used.

4.
Foods ; 11(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35681297

ABSTRACT

This study highlighted the role of an 80% ethanolic Mon-Pu (Glochidion wallichianum) leaf extract (MPE), a novel natural antioxidative ingredient, in controlling the oxidative stability and physicochemical properties of a cooked sausage model system (SMS). MPE had a total extractable phenolic content of 16 mg/100 g, with DPPH● scavenging activity, ABTS●+ scavenging activity, and ferric reducing antioxidant power of 2.3, 1.9, and 1.2 mmole Trolox equivalents (TE)/g, respectively. The effects of different concentrations of MPE (0.01−10%, w/w) formulated into SMS on lipid oxidation, protein oxidation, and discoloration were compared to synthetic butylated hydroxyl toluene (BHT; 0.003%, w/w) and a control (without antioxidant). The peroxide value (PV), thiobarbituric acid reactive substances (TBARS), and protein carbonyl contents of SMS tended to increase with increasing MPE concentration (p < 0.05), indicating that high MPE excipient has a pro-oxidative effect. The lowest lipid oxidation (PV and TBARS) and protein carbonyl contents were observed when 0.01% MPE was used to treat SMS (p < 0.05), which was comparable or even greater than BHT-treated SMS. High concentrations (1−10%) of MPE incorporation led to increases in the discoloration of SMS (p < 0.05) with a negligible change in pH of SMS. The water exudate was reduced when MPE was incorporated into SMS compared to control (p < 0.05). Furthermore, MPE at 0.01% significantly reduced lipid oxidation in cooked EMS during refrigerated storage. According to the findings, a low amount of MPE, particularly at 0.01%, in a formulation could potentially maintain the oxidative stability and physicochemical qualities of cooked SMS that are comparable to or better than synthetic BHT.

SELECTION OF CITATIONS
SEARCH DETAIL