Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Lancet Microbe ; 5(4): e379-e389, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493790

ABSTRACT

BACKGROUND: Melioidosis is a neglected but often fatal tropical disease. The disease has broad clinical manifestations, which makes diagnosis challenging and time consuming. To improve diagnosis, we aimed to evaluate the performance of the CRISPR-Cas12a system (CRISPR-BP34) to detect Burkholderia pseudomallei DNA across clinical specimens from patients suspected to have melioidosis. METHODS: We conducted a prospective, observational cohort study of adult patients (aged ≥18 years) with melioidosis at Sunpasitthiprasong Hospital, a tertiary care hospital in Thailand. Participants were eligible for inclusion if they had culture-confirmed B pseudomallei infection from any clinical samples. Data were collected from patient clinical records and follow-up telephone calls. Routine clinical samples (blood, urine, respiratory secretion, pus, and other body fluids) were collected for culture. We documented time taken for diagnosis, and mortality at day 28 of follow-up. We also performed CRISPR-BP34 detection on clinical specimens collected from 330 patients with suspected melioidosis and compared its performance with the current gold-standard culture-based method. Discordant results were validated by three independent qualitative PCR tests. This study is registered with the Thai Clinical Trial Registry, TCTR20190322003. FINDINGS: Between Oct 1, 2019, and Dec 31, 2022, 876 patients with culture-confirmed melioidosis were admitted or referred to Sunpasitthiprasong Hospital, 433 of whom were alive at diagnosis and were enrolled in this study. Median time from sample collection to diagnosis by culture was 4·0 days (IQR 3·0-5·0) among all patients with known survival status at day 28, which resulted in delayed treatment. 199 (23%) of 876 patients died before diagnosis and 114 (26%) of 433 patients in follow-up were treated, but died within 28 days of admission. To test the CRISPR-BP34 assay, we enrolled and collected clinical samples from 114 patients with melioidosis and 216 patients without melioidosis between May 26 and Dec 31, 2022. Application of CRISPR-BP34 reduced the median sample-to-diagnosis time to 1·1 days (IQR 0·7-1·5) for blood samples, 2·3 h (IQR 2·3-2·4) for urine, and 3·3 h (3·1-3·4) for respiratory secretion, pus, and other body fluids. The overall sensitivity of CRISPR-BP34 was 93·0% (106 of 114 samples [95% CI 86·6-96·9]) compared with 66·7% (76 of 114 samples [57·2-75·2]) for culture. The overall specificity of CRISPR-BP34 was 96·8% (209 of 216 samples [95% CI 93·4-98·7]), compared with 100% (216 of 216 samples [98·3-100·0]) for culture. INTERPRETATION: The sensitivity, specificity, speed, and window of clinical intervention offered by CRISPR-BP34 support its prospective use as a point-of-care diagnostic tool for melioidosis. Future development should be focused on scalability and cost reduction. FUNDING: Chiang Mai University Thailand and Wellcome Trust UK.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Adult , Humans , Benchmarking , Burkholderia pseudomallei/genetics , Developing Countries , Melioidosis/diagnosis , Pathology, Molecular , Point-of-Care Systems , Sensitivity and Specificity , Suppuration
2.
Arthropod Struct Dev ; 76: 101296, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37657362

ABSTRACT

Mosquitoes rely mainly on the olfactory system to track hosts. Sensilla contain olfactory neuron receptors that perceive different kinds of odorants and transfer crucial information regarding the surrounding environment. Anopheles maculatus and An. sawadwongporni, members of the Maculatus Group, are regarded as vectors of malaria in Thailand. The fine structure of their sensilla has yet to be identified. Herein, scanning electron microscopy is used to examine the sensilla located on the antennae of adults An. maculatus and An. sawadwongporni, collected from the Thai-Myanmar border. Four major types of antennal sensilla are discovered in both species: chaetica, coeloconica, basiconica (grooved pegs) and trichodea. The antennae of female An. maculatus have longer lengths (µm, mean ± SE) in the long sharp-tipped trichodea (40.62 ± 0.35 > 38.20 ± 0.36), blunt-tipped trichodea (20.39 ± 0.62 > 18.62 ± 0.35), and basiconica (7.84 ± 0.15 > 7.41 ± 0.12) than those of An. sawadwongporni. Using light microscopy, it is found that the mean numbers of large sensilla coeloconica (lco) on both flagella in An. maculatus (left: 32.97 ± 0.48; right: 33.27 ± 0.65) are also greater when compared to An. sawadwongporni (left: 30.40 ± 0.62; right: 29.97 ± 0.49). The mean counts of lco located on flagellomeres 1-3, 6, and 9 in An. maculatus are significantly higher than those of An. sawadwongporni. The data in this study indicate that two closely related Anopheles species exhibit similar morphology of sensilla types, but show variations in length, and likewise in the number of large sensilla coeloconica between them, suggesting they might be causative factors that affect their behaviors driven by the sense of smell.


Subject(s)
Anopheles , Malaria , Female , Animals , Sensilla , Mosquito Vectors , Microscopy, Electron, Scanning
3.
Ann Hum Genet ; 87(3): 137-145, 2023 05.
Article in English | MEDLINE | ID: mdl-36709419

ABSTRACT

INTRODUCTION: The α0 -thalassemia 44.6 kb or Chiang Rai (--CR ) deletion has been reported in northern Thailand and is capable of causing hemoglobin (Hb) H disease and a lethal α-thalassemia genotype, Hb Bart's hydrops fetalis, in this region. However, there are no current data regarding the frequency of --CR nationwide due to a lack of effective diagnostic assay. Therefore, this study aimed to develop a reliable platform for simultaneous genotyping of --CR and two common α0 -thalassemias in Thailand (--SEA and --THAI ) and investigate the frequency of --CR across Thailand. METHODS: Multiplex gap-PCR assay and five renewable plasmid DNA controls for --CR , --SEA , --THAI , α2-globin (HBA2), and ß-actin (ACTB) were newly developed and validated with reference methods. The developed assay was further tested on 1046 unrelated individuals with a reduced mean corpuscular volume (MCV) of less than 75 fl for investigating genotypic and allelic spectrum of --CR . RESULTS: Our developed assay showed 100% concordance with reference methods. The results were valid and reproducible throughout hundreds of reactions. Comparison of the genotypic and allelic spectra revealed that heterozygous --SEA (--SEA /αα) and --SEA alleles were dominant with the frequency of 22.85% (239/1046) and 13.34% (279/2092), respectively. Of these, --THAI and --CR were relatively rare in this population and comparable to each other with the allelic frequency of 0.14% (3/2092). CONCLUSION: This study successfully established a reliable molecular diagnostic platform for genotyping of --CR , --SEA , and --THAI in a single reaction. Additionally, we demonstrated the frequency of --CR in Thailand for the first time and provided knowledge basis for the planning of severe α-thalassemia prevention and control programs in Thailand, where thalassemia is endemic.


Subject(s)
alpha-Thalassemia , Female , Humans , alpha-Thalassemia/diagnosis , alpha-Thalassemia/genetics , Thailand , Pathology, Molecular , Hydrops Fetalis/genetics , Erythrocytes
4.
Insects ; 13(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36354859

ABSTRACT

The occurrence and spread of insecticide resistance has had a negative effect on the efficacy of insecticide-based tools and is distributed worldwide, including the Greater Mekong Subregion (GMS). This study aims to determine the insecticide susceptibility of malaria and dengue vectors in malaria and dengue hotspots on the Thai-Myanmar border. Mosquito larvae and pupae were obtained from water sources from December 2019 to April 2020 in Tha Song Yang District, Tak province, western Thailand. WHO bioassay susceptibility tests were conducted with three classes of insecticides to evaluate the knockdown and mortality rates of Anopheles and Aedes aegypti female adults. V1016G and F1534C kdr mutations in the voltage-gated sodium channel of Ae. aegypti were identified using a multiplex PCR. A total of 5764 female mosquitoes were bioassayed in this study, including Anopheles spp. (92.63%) and F1 Ae. aegypti (7.37%). After 24 h of observation, An. minimus s.l. (n = 3885) and An. maculatus s.l. (n = 1138) in Suan Oi (SO) and Tala Oka (TO) were susceptible to pyrethroids, organophosphates and carbamates (except bendiocarb) with 98-100% mortality (MR). Resistance to bendiocarb was detected with a mortality rate of 88.80%, 88.77%, and 89.92% for An. minimus s.l. (n = 125, 125) and An. maculatus s.l. (n = 66), respectively. The first generation of Ae. aegypti adult females were suspected of resistance to deltamethrin (n = 225, MR = 96.89%) and confirmed resistance to permethrin (n = 200, MR = 20.00%). V1016G and F1534C mutations were detected in three genotypes, heterozygote and homozygote forms. The correlation between the kdr alleles and deltamethrin resistance was significant. In conclusion, bendiocarb resistance was found in primary malaria vectors, An. minimus s.l. and An. maculatus s.l. F1 Ae. aegypti population was pyrethroids-resistant, associated with kdr alleles. Therefore, molecular analysis should be conducted to gain insights into the mechanism of insecticide resistance. Routine malaria vector control programmes, such as fogging implementation in hotspot villages to induce Aedes resistance available in peri-domestic sites, are questionable.

5.
PLoS Negl Trop Dis ; 16(8): e0010659, 2022 08.
Article in English | MEDLINE | ID: mdl-36037185

ABSTRACT

Detection of Burkholderia pseudomallei, a causative bacterium for melioidosis, remains a challenging undertaking due to long assay time, laboratory requirements, and the lack of specificity and sensitivity of many current assays. In this study, we are presenting a novel method that circumvents those issues by utilizing CRISPR-Cas12a coupled with isothermal amplification to identify B. pseudomallei DNA from clinical isolates. Through in silico search for conserved CRISPR-Cas12a target sites, we engineered the CRISPR-Cas12a to contain a highly specific spacer to B. pseudomallei, named crBP34. The crBP34-based detection assay can detect as few as 40 copies of B. pseudomallei genomic DNA while discriminating against other tested common pathogens. When coupled with a lateral flow dipstick, the assay readout can be simply performed without the loss of sensitivity and does not require expensive equipment. This crBP34-based detection assay provides high sensitivity, specificity and simple detection method for B. pseudomallei DNA. Direct use of this assay on clinical samples may require further optimization as these samples are complexed with high level of human DNA.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Burkholderia pseudomallei/genetics , CRISPR-Cas Systems , DNA , Genomics , Humans , Melioidosis/microbiology , Sensitivity and Specificity
6.
Nat Commun ; 12(1): 3130, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035251

ABSTRACT

The ability to target epigenetic marks like DNA methylation to specific loci is important in both basic research and in crop plant engineering. However, heritability of targeted DNA methylation, how it impacts gene expression, and which epigenetic features are required for proper establishment are mostly unknown. Here, we show that targeting the CG-specific methyltransferase M.SssI with an artificial zinc finger protein can establish heritable CG methylation and silencing of a targeted locus in Arabidopsis. In addition, we observe highly heritable widespread ectopic CG methylation mainly over euchromatic regions. This hypermethylation shows little effect on transcription while it triggers a mild but significant reduction in the accumulation of H2A.Z and H3K27me3. Moreover, ectopic methylation occurs preferentially at less open chromatin that lacks positive histone marks. These results outline general principles of the heritability and interaction of CG methylation with other epigenomic features that should help guide future efforts to engineer epigenomes.


Subject(s)
Arabidopsis/genetics , Bacterial Proteins/genetics , DNA Methylation , DNA-Cytosine Methylases/genetics , Gene Expression Regulation, Plant , Spiroplasma/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation Sequencing/methods , DNA-Cytosine Methylases/metabolism , Histones/metabolism , Plants, Genetically Modified , RNA-Seq/methods , Spiroplasma/enzymology
7.
Nat Commun ; 10(1): 3916, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477705

ABSTRACT

Transcription by RNA polymerase V (Pol V) in plants is required for RNA-directed DNA methylation, leading to transcriptional gene silencing. Global chromatin association of Pol V requires components of the DDR complex DRD1, DMS3 and RDM1, but the assembly process of this complex and the underlying mechanism for Pol V recruitment remain unknown. Here we show that all DDR complex components co-localize with Pol V, and we report the cryoEM structures of two complexes associated with Pol V recruitment-DR (DMS3-RDM1) and DDR' (DMS3-RDM1-DRD1 peptide), at 3.6 Å and 3.5 Å resolution, respectively. RDM1 dimerization at the center frames the assembly of the entire complex and mediates interactions between DMS3 and DRD1 with a stoichiometry of 1 DRD1:4 DMS3:2 RDM1. DRD1 binding to the DR complex induces a drastic movement of a DMS3 coiled-coil helix bundle. We hypothesize that both complexes are functional intermediates that mediate Pol V recruitment.


Subject(s)
Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Methylation , DNA-Binding Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , RNA, Plant/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/ultrastructure , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/ultrastructure , Cryoelectron Microscopy , DNA, Plant/genetics , DNA, Plant/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/ultrastructure , Gene Expression Regulation, Plant , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Protein Binding , Protein Conformation , RNA, Plant/chemistry , RNA, Plant/genetics
8.
Science ; 362(6419): 1182-1186, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30523112

ABSTRACT

DNA methylation generally functions as a repressive transcriptional signal, but it is also known to activate gene expression. In either case, the downstream factors remain largely unknown. By using comparative interactomics, we isolated proteins in Arabidopsis thaliana that associate with methylated DNA. Two SU(VAR)3-9 homologs, the transcriptional antisilencing factor SUVH1, and SUVH3, were among the methyl reader candidates. SUVH1 and SUVH3 bound methylated DNA in vitro, were associated with euchromatic methylation in vivo, and formed a complex with two DNAJ domain-containing homologs, DNAJ1 and DNAJ2. Ectopic recruitment of DNAJ1 enhanced gene transcription in plants, yeast, and mammals. Thus, the SUVH proteins bind to methylated DNA and recruit the DNAJ proteins to enhance proximal gene expression, thereby counteracting the repressive effects of transposon insertion near genes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA Methylation , Gene Expression Regulation, Plant , HSP40 Heat-Shock Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Methyltransferases/metabolism , Transcription, Genetic , Arabidopsis/enzymology , HSP40 Heat-Shock Proteins/chemistry , Protein Domains
9.
Elife ; 52016 11 24.
Article in English | MEDLINE | ID: mdl-27882870

ABSTRACT

Polypyrimidine-tract binding protein PTBP1 can repress splicing during the exon definition phase of spliceosome assembly, but the assembly steps leading to an exon definition complex (EDC) and how PTBP1 might modulate them are not clear. We found that PTBP1 binding in the flanking introns allowed normal U2AF and U1 snRNP binding to the target exon splice sites but blocked U2 snRNP assembly in HeLa nuclear extract. Characterizing a purified PTBP1-repressed complex, as well as an active early complex and the final EDC by SILAC-MS, we identified extensive PTBP1-modulated changes in exon RNP composition. The active early complex formed in the absence of PTBP1 proceeded to assemble an EDC with the eviction of hnRNP proteins, the late recruitment of SR proteins, and binding of the U2 snRNP. These results demonstrate that during early stages of splicing, exon RNP complexes are highly dynamic with many proteins failing to bind during PTBP1 arrest.


Subject(s)
Exons , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , RNA Splicing , Spliceosomes/chemistry , Spliceosomes/metabolism , HeLa Cells , Humans , Mass Spectrometry , RNA, Small Nuclear/metabolism , Splicing Factor U2AF/metabolism
10.
Genes Dev ; 28(22): 2518-31, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25403181

ABSTRACT

The pairing of 5' and 3' splice sites across an intron is a critical step in spliceosome formation and its regulation. Interactions that bring the two splice sites together during spliceosome assembly must occur with a high degree of specificity and fidelity to allow expression of functional mRNAs and make particular alternative splicing choices. Here, we report a new interaction between stem-loop 4 (SL4) of the U1 snRNA, which recognizes the 5' splice site, and a component of the U2 small nuclear ribonucleoprotein particle (snRNP) complex, which assembles across the intron at the 3' splice site. Using a U1 snRNP complementation assay, we found that SL4 is essential for splicing in vivo. The addition of free U1-SL4 to a splicing reaction in vitro inhibits splicing and blocks complex assembly prior to formation of the prespliceosomal A complex, indicating a requirement for a SL4 contact in spliceosome assembly. To characterize the interactions of this RNA structure, we used a combination of stable isotope labeling by amino acids in cell culture (SILAC), biotin/Neutravidin affinity pull-down, and mass spectrometry. We show that U1-SL4 interacts with the SF3A1 protein of the U2 snRNP. We found that this interaction between the U1 snRNA and SF3A1 occurs within prespliceosomal complexes assembled on the pre-mRNA. Thus, SL4 of the U1 snRNA is important for splicing, and its interaction with SF3A1 mediates contact between the 5' and 3' splice site complexes within the assembling spliceosome.


Subject(s)
RNA Splicing/physiology , RNA, Small Nuclear/metabolism , Ribonucleoprotein, U2 Small Nuclear/metabolism , Spliceosomes/metabolism , HeLa Cells , Humans , Inverted Repeat Sequences/genetics , Mutation , Protein Binding/genetics , RNA Splice Sites , RNA Splicing/genetics , RNA Splicing Factors , RNA, Small Nuclear/genetics
11.
Methods Mol Biol ; 1126: 3-12, 2014.
Article in English | MEDLINE | ID: mdl-24549652

ABSTRACT

In eukaryotic organisms, nascent transcripts of protein-coding genes contain intronic sequences that are not present in mature mRNAs. Pre-mRNA splicing removes introns and joins exons to form mature mRNAs. It is catalyzed by a large RNP complex called the spliceosome. Sequences within the pre-mRNA determine intron recognition and excision. This process occurs with a high degree of accuracy to generate the functional transcriptome of a cell.


Subject(s)
Molecular Biology/methods , RNA Precursors/genetics , RNA Splicing , Spliceosomes/genetics , Base Sequence , Exons/genetics , Gene Expression Profiling , Humans , Introns/genetics
12.
Bioimpacts ; 4(4): 183-9, 2014.
Article in English | MEDLINE | ID: mdl-25671174

ABSTRACT

INTRODUCTION: Murdannia loriformis (hassk) Rolla Roa et Kammathy, family Commelinaceae, is used by Chinese practitioners as a remedy for cancer in an early stage, and also for treating other diseases including colds, throat infections, pneumonia, diabetes mellitus, flu and inflammation. Although anticancer as well as other pharmacological effects of M. loriformis have been reported, its anti-inflammatory and other activities related to inflammation are still limited. METHODS: The anti-inflammatory activity was evaluated using carrageenan- and arachidonic acid-induced paw edema in rats, and cotton pellet-induced granuloma formation in rats. The analgesic and antipyretic activities were determined by formalin test in mice and yeast-induced hyperthermia in rats, respectively. RESULTS: The ethanol extract of the aerial part of M. loriformis exhibited anti-inflammatory activity on the rat paw edema induced by carrageenan and arachidonic acid. It also showed an inhibitory effect on the granuloma and the transudative formation of the rat implanted with cotton pellets as well as lowered the elevated serum alkaline phosphatase activity to normal level. It exerted potent analgesic effect on both the early and late phase of formalin test as well as the antipyretic effect on yeast-induced hyperthermic rats. The oral single high dose of the extract of 5,000 mg/Kg did not produce death or any abnormalities or changes of the internal organs of rats during 14 days of the observed period. CONCLUSION: The results obtained from this study support the use of the plant in traditional medicine for inflammatory ailments.

SELECTION OF CITATIONS
SEARCH DETAIL
...