Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4898, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994411

ABSTRACT

The emergence of a domain wall property that is forbidden by symmetry in bulk can offer unforeseen opportunities for nanoscale low-dimensional functionalities in ferroic materials. Here, we report that the piezoelectric response is greatly enhanced in the ferroelastic domain walls of centrosymmetric tungsten trioxide thin films due to a large strain gradient of 106 m-1, which exists over a rather wide width (~20 nm) of the wall. The interrelationship between the strain gradient, electric polarity, and the electromechanical property is scrutinized by detecting of the lattice distortion using atomic scale strain analysis, and also by detecting the depolarized electric field using differential phase contrast technique. We further demonstrate that the domain walls can be manipulated and aligned in specific directions deterministically using a scanning tip, which produces a surficial strain gradient. Our findings provide the comprehensive observation of a flexopiezoelectric phenomenon that is artificially controlled by externally induced strain gradients.

2.
Nanoscale ; 9(14): 4713-4720, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28327775

ABSTRACT

Silicon anodes for lithium ion batteries (LiBs) have been attracting considerable attention due to a theoretical capacity up to about 10 times higher than that of conventional graphite. However, huge volume expansion during the cycle causes cracks in the silicon, resulting in the degradation of cycling performance and eventual failure. Moreover, low electrical conductivity and an unstable solid electrolyte interface (SEI) layer resulting from repeated changes in volume still block the next step forward for the commercialization of the silicon material. Herein we demonstrate the carbon nanotube (CNT) aerogel/Si nanohybrid structure for anode materials of LiBs via freeze casting followed by an RF magnetron sputtering process, exhibiting improved capacity retention compared to Si only samples during 1000 electrochemical cycles. The CNT aerogels as 3D porous scaffold structures could provide buffer volume for the expansion/shrinkage of Si lattices upon cycling and increase electrical conductivity. In addition, the nanospherical and relatively thin SEI layers of the CNT aerogel/Si nanohybrid structure show better lithium ion diffusion characteristics during cycling. For this reason, the Si@CNT aerogel anode still yielded a high specific capacity of 1439 mA h g-1 after 1000 charge/discharge cycles with low capacity fading. Our approach could be applied to other group IV LiB materials that undergo large volume changes, and also has promising potential for high performance energy applications.

3.
Phys Chem Chem Phys ; 19(2): 1268-1275, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27966694

ABSTRACT

Lithium-rich layered oxides show promise as high-energy harvesting materials due to their large capacities. However, questions remain regarding the large irreversible loss in capacities for the first charge-discharge cycle due to oxygen removal in lattices related to layered Li2MnO3. Herein we present detailed studies on Li-rich Mn-based layered oxides of 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 (Li-rich NCM) electrochemically activated between 2.5 V and 4.3 or 4.7 V vs. Li+/Li. Electron energy loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) revealed unusual manganese reduction after the first charge up to a high voltage of 4.7 V. Moreover, the electronic structure did not fully recover to the original pristine of Mn4+ state after discharge. Interestingly, these phenomena were not limited to a single particle, but were observed across the entire electrode. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and electron dispersive spectra (EDS) also showed a dramatic decline in oxygen content with highly porous morphologies, associated with oxygen vacancy formation following oxidation of O2- ions to O2. Our analysis suggests that an unstable manganese valence state with severe defects due to oxygen vacancies may lead to large irreversible capacity loss during the first charge-discharge cycle of Li-rich layered oxides.

4.
Nat Nanotechnol ; 10(11): 972-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26322941

ABSTRACT

The phase separation of multiple competing structural/ferroelectric phases has attracted particular attention owing to its excellent electromechanical properties. Little is known, however, about the strain-gradient-induced electronic phenomena at the interface of competing structural phases. Here, we investigate the polymorphic phase interface of bismuth ferrites using spatially resolved photocurrent measurements, present the observation of a large enhancement of the anisotropic interfacial photocurrent by two orders of magnitude, and discuss the possible mechanism on the basis of the flexoelectric effect. Nanoscale characterizations of the photosensitive area through position-sensitive angle-resolved piezoresponse force microscopy and electron holography techniques, in conjunction with phase field simulation, reveal that regularly ordered dipole-charged domain walls emerge. These findings offer practical implications for complex oxide optoelectronics.

5.
ACS Appl Mater Interfaces ; 7(32): 17866-73, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26226167

ABSTRACT

The zinc antimonide compound ZnxSby is one of the most efficient thermoelectric materials known at high temperatures due to its exceptional low thermal conductivity. For this reason, it continues to be the focus of active research, especially regarding its glass-like atomic structure. However, before practical use in actual surroundings, such as near a vehicle manifold, it is imperative to analyze the thermal reliability of these materials. Herein, we present the thermal cycling behavior of ZnxSby thin films in nitrogen (N2) purged or ambient atmosphere. ZnxSby thin films were prepared by cosputtering and reached a power factor of 1.39 mW m(-1) K(-2) at 321 °C. We found maximum power factor values gradually decreased in N2 atmosphere due to increasing resistivity with repeated cycling, whereas the specimen in air kept its performance. X-ray diffraction and electron microscopy observations revealed that fluidity of Zn atoms leads to nanoprecipitates, porous morphologies, and even growth of a coating layer or fiber structures on the surface of ZnxSby after repetitive heating and cooling cycles. With this in mind, our results indicate that proper encapsulation of the ZnxSby surface would reduce these unwanted side reactions and the resulting degradation of thermoelectric performance.

6.
J Nanosci Nanotechnol ; 15(11): 8984-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26726629

ABSTRACT

Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, have attracted significant attention as good candidates for next-generation heat-spreading materials because of their high thermal conductivity, mechanical flexibility, etc. Regarding the thermal spreading performance of carbon-based nanofilms, remarkable test results have been reported mainly from the industrial side, but their validity and the physical mechanism underlying the heat transfer enhancement are still under debate. In this study, we assess the thermal spreading performance of a multi-walled CNT film on a copper foil using a non-contact characterization method in a simple and methodical manner, and discuss the possibility of carbon nanofilms as heat spreaders based on the experimental and numerical results. This study provides useful information on heat transfer enhancement by carbon nanofilms and could contribute to the development of high-performance carbon-based heat-spreading coatings.

7.
Nat Commun ; 4: 2520, 2013.
Article in English | MEDLINE | ID: mdl-24084684

ABSTRACT

The surface of water provides an excellent environment for gliding movement, in both nature and modern technology, from surface living animals such as the water strider, to Langmuir-Blodgett films. The high surface tension of water keeps the contacting objects afloat, and its low viscosity enables almost frictionless sliding on the surface. Here we utilize the water surface as a nearly ideal underlying support for free-standing ultra-thin films and develop a novel tensile testing method for the precise measurement of mechanical properties of the films. In this method, namely, the pseudo free-standing tensile test, all specimen preparation and testing procedures are performed on the water surface, resulting in easy handling and almost frictionless sliding without specimen damage or substrate effects. We further utilize van der Waals adhesion for the damage-free gripping of an ultra-thin film specimen. Our approach can potentially be used to explore the mechanical properties of emerging two-dimensional materials.

8.
J Nanosci Nanotechnol ; 12(2): 1371-4, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22629959

ABSTRACT

Thin film Schottky solar cells were fabricated without doping processes, which may provide an alternative approach to the conventional thin film solar cells in the n-i-p configuration. A thin Co layer was coated on a substrate, which worked as a back contact metal and then Si film was grown above it. Deposition condition may modulate the Si film structure to be a fully amorphous Si (a-Si) or a mixing of microcrystalline Si (mc-Si) and a-Si. A thin Au layer was deposited above the grown Si films, which formed a Schottky junction. Two types of Schottky solar cells were prepared on a fully a-Si film and a mixing of mc-Si and a-Si film. Under one sun illumination, the mixing of mc-Si and a-Si device provided 35% and 68.4% enhancement in the open circuit voltage and fill factor compared to that of the amorphous device.

9.
Nat Commun ; 2: 567, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22127063

ABSTRACT

Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.


Subject(s)
Electricity , Ferric Compounds/chemistry , Magnetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...