Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(33): e2300036120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549292

ABSTRACT

While the world is rapidly transforming into a superaging society, pharmaceutical approaches to treat sarcopenia have hitherto not been successful due to their insufficient efficacy and failure to specifically target skeletal muscle cells (skMCs). Although electrical stimulation (ES) is emerging as an alternative intervention, its efficacy toward treating sarcopenia remains unexplored. In this study, we demonstrate a silver electroceutical technology with the potential to treat sarcopenia. First, we developed a high-throughput ES screening platform that can simultaneously stimulate 15 independent conditions, while utilizing only a small number of human-derived primary aged/young skMCs (hAskMC/hYskMC). The in vitro screening showed that specific ES conditions induced hypertrophy and rejuvenation in hAskMCs, and the optimal ES frequency in hAskMCs was different from that in hYskMCs. When applied to aged mice in vivo, specific ES conditions improved the prevalence and thickness of Type IIA fibers, along with biomechanical attributes, toward a younger skMC phenotype. This study is expected to pave the way toward an electroceutical treatment for sarcopenia with minimal side effects and help realize personalized bioelectronic medicine.


Subject(s)
Sarcopenia , Animals , Humans , Mice , Muscle Fibers, Skeletal , Muscle, Skeletal/physiology , Phenotype , Sarcopenia/therapy , Silver
2.
Theranostics ; 13(5): 1506-1519, 2023.
Article in English | MEDLINE | ID: mdl-37056568

ABSTRACT

Natural killer (NK) cells are an attractive cell source in cancer immunotherapy due to their potent antitumor ability and promising safety for allogenic applications. However, the clinical outcome of NK cell therapy has been limited due to poor persistence and loss of activity in the cytokine-deficient tumor microenvironment. Benefits from exogenous administration of soluble interleukin-2 (IL-2) to stimulate the activity of NK cells have not been significant due to cytokine consumption and activation of other immune cells, compromising both efficacy and safety. Methods: To overcome these drawbacks, we developed a novel membrane-bound protein (MBP) technology to express IL-2 on the surface of NK-92 cells (MBP NK) inducing autocrine signal for proliferation without IL-2 supplementation. Results: The MBP NK cells exhibited not only improved proliferation in IL-2 deficient conditions but also stronger secretion of cytolytic granules leading to enhanced anti-tumor activity both in vitro and in vivo. Furthermore, the experiment with a spheroid solid tumor model exhibited enhanced infiltration by MBP NK cells creating higher local effector-to-target ratio for efficient tumor killing. These results suggest MBP technology can be an effective utility for NK-92 cell engineering to increase anti-tumor activity and reduce potential adverse effects, providing a higher therapeutic index in clinical applications.


Subject(s)
Cytokines , Interleukin-2 , Cytokines/metabolism , Interleukin-2/metabolism , Cell Line, Tumor , Killer Cells, Natural , Immunotherapy, Adoptive/methods
3.
ACS Appl Mater Interfaces ; 15(12): 15059-15070, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36809905

ABSTRACT

Rare cells, such as circulating tumor cells or circulating fetal cells, provide important information for the diagnosis and prognosis of cancer and prenatal diagnosis. Since undercounting only a few cells can lead to significant misdiagnosis and incorrect decisions in subsequent treatment, it is crucial to minimize cell loss, particularly for rare cells. Moreover, the morphological and genetic information on cells should be preserved as intact as possible for downstream analysis. The conventional immunocytochemistry (ICC), however, fails to meet these requirements, causing unexpected cell loss and deformation of the cell organelles which may mislead the classification of benign and malignant cells. In this study, a novel ICC technique for preparing lossless cellular specimens was developed to improve the diagnostic accuracy of rare cell analysis and analyze intact cellular morphology. To this end, a robust and reproducible porous hydrogel pellicle was developed. This hydrogel encapsulates cells to minimize cell loss from the repeated exchange of reagents and prevent cell deformation. The soft hydrogel pellicle allows stable and intact cell picking for further downstream analysis, which is difficult with conventional ICC methods that permanently immobilize cells. The lossless ICC platform will pave the way for robust and precise rare cell analysis toward clinical practice.


Subject(s)
Neoplasms , Humans , Immunohistochemistry , Porosity , Hydrogels
4.
Theranostics ; 12(8): 3676-3689, 2022.
Article in English | MEDLINE | ID: mdl-35664056

ABSTRACT

Understanding cancer heterogeneity is essential to finding diverse genetic mutations in metastatic cancers. Thus, it is critical to isolate all types of CTCs to identify accurate cancer information from patients. Moreover, full automation robustly capturing the full spectrum of CTCs is an urgent need for CTC diagnosis to be routine clinical practice. Methods: Here we report the full capture of heterogeneous CTC populations using fully automated, negative depletion-based continuous centrifugal microfluidics (CCM). Results: The CCM system demonstrated high performance (recovery rates exceeding 90% and WBC depletion rate of 99.9%) across a wide range of phenotypes (EpCAM(+), EpCAM(-), small-, large-sized, and cluster) and cancers (lung, breast, and bladder). Applied in 30 lung adenocarcinoma patients harboring epidermal growth factor receptor (EGFR) mutations, the system isolated diverse phenotypes of CTCs in marker expression and size, implying the importance of unbiased isolation. Genetic analyses of intra-patient samples comparing cell-free DNA with CCM-isolated CTCs yielded perfect concordance, and CTC enumeration using our technique was correlated with clinical progression as well as response to EGFR inhibitors. Conclusion: Our system also introduces technical advances which assure rapid, reliable, and reproducible results, thus enabling a more comprehensive application of robust CTC analysis in clinical practice.


Subject(s)
Neoplastic Cells, Circulating , Automation , Cell Line, Tumor , Cell Separation/methods , Epithelial Cell Adhesion Molecule/genetics , ErbB Receptors/genetics , Humans , Microfluidics/methods , Neoplastic Cells, Circulating/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...