Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 9(8)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796647

ABSTRACT

Clinical risk-scoring systems are important for identifying patients with upper gastrointestinal bleeding (UGIB) who are at a high risk of hemodynamic instability. We developed an algorithm that predicts adverse events in patients with initially stable non-variceal UGIB using machine learning (ML). Using prospective observational registry, 1439 out of 3363 consecutive patients were enrolled. Primary outcomes included adverse events such as mortality, hypotension, and rebleeding within 7 days. Four machine learning algorithms, namely, logistic regression with regularization (LR), random forest classifier (RF), gradient boosting classifier (GB), and voting classifier (VC), were compared with the Glasgow-Blatchford score (GBS) and Rockall scores. The RF model showed the highest accuracies and significant improvement over conventional methods for predicting mortality (area under the curve: RF 0.917 vs. GBS 0.710), but the performance of the VC model was best in hypotension (VC 0.757 vs. GBS 0.668) and rebleeding within 7 days (VC 0.733 vs. GBS 0.694). Clinically significant variables including blood urea nitrogen, albumin, hemoglobin, platelet, prothrombin time, age, and lactate were identified by the global feature importance analysis. These results suggest that ML models will be useful early predictive tools for identifying high-risk patients with initially stable non-variceal UGIB admitted at an emergency department.

2.
Comput Methods Programs Biomed ; 196: 105615, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32599340

ABSTRACT

PURPOSE: Computed tomography (CT) volume sets reconstructed with different kernels are helping to increase diagnostic accuracy. However, several CT volumes reconstructed with different kernels are difficult to sustain, due to limited storage and maintenance issues. A CT kernel conversion method is proposed using convolutional neural networks (CNN). METHODS: A total of 3289 CT images from ten patients (five men and five women; mean age, 63.0 ± 8.6 years) were obtained in May 2016 (Somatom Sensation 16, Siemens Medical Systems, Forchheim, Germany). These CT images were reconstructed with various kernels, including B10f (very smooth), B30f (medium smooth), B50f (medium sharp), and B70f (very sharp) kernels. Smooth kernel images were converted into sharp kernel images using super-resolution (SR) network with Squeeze-and-Excitation (SE) blocks and auxiliary losses, and vice versa. In this study, the single-conversion model and multi-conversion model were presented. In case of the single-conversion model, for the one corresponding output image (e.g., B10f to B70), SE-Residual blocks were stacked. For the multi-conversion model, to convert an image into several output images (e.g., B10f to B30f, B50f, and B70f, and vice versa), progressive learning (PL) was employed by calculating auxiliary losses in every four SE-Residual blocks. Through auxiliary losses, the model could learn mutual relationships between different kernel types. The conversion quality was evaluated by the root-mean-square-error (RMSE), structural similarity (SSIM) index and mutual information (MI) between original and converted images. RESULTS: The RMSE (SSIM index , MI) of the multi-conversion model was 4.541 ± 0.688 (0.998 ± 0.001 , 2.587 ± 0.137), 27.555 ± 5.876 (0.944 ± 0.021 , 1.735 ± 0.137), 72.327 ± 17.387 (0.815 ± 0.053 , 1.176 ± 0.096), 8.748 ± 1.798 (0.996 ± 0.002 , 2.464 ± 0.121), 9.470 ± 1.772 (0.994 ± 0.003 , 2.336 ± 0.133), and 9.184 ± 1.605 (0.994 ± 0.002 , 2.342 ± 0.138) in conversion between B10f-B30f, B10f-B50f, B10f-B70f, B70f-B50f, B70f-B30f, and B70f-B10f, respectively, which showed significantly better image quality than the conventional model. CONCLUSIONS: We proposed deep learning-based CT kernel conversion using SR network. By introducing simplified SE blocks and PL, the model performance was significantly improved.


Subject(s)
Neural Networks, Computer , Tomography, X-Ray Computed , Aged , Female , Humans , Male , Middle Aged
3.
Korean J Radiol ; 20(8): 1275-1284, 2019 08.
Article in English | MEDLINE | ID: mdl-31339015

ABSTRACT

OBJECTIVE: To develop algorithms using convolutional neural networks (CNNs) for automatic segmentation of acute ischemic lesions on diffusion-weighted imaging (DWI) and compare them with conventional algorithms, including a thresholding-based segmentation. MATERIALS AND METHODS: Between September 2005 and August 2015, 429 patients presenting with acute cerebral ischemia (training:validation:test set = 246:89:94) were retrospectively enrolled in this study, which was performed under Institutional Review Board approval. Ground truth segmentations for acute ischemic lesions on DWI were manually drawn under the consensus of two expert radiologists. CNN algorithms were developed using two-dimensional U-Net with squeeze-and-excitation blocks (U-Net) and a DenseNet with squeeze-and-excitation blocks (DenseNet) with squeeze-and-excitation operations for automatic segmentation of acute ischemic lesions on DWI. The CNN algorithms were compared with conventional algorithms based on DWI and the apparent diffusion coefficient (ADC) signal intensity. The performances of the algorithms were assessed using the Dice index with 5-fold cross-validation. The Dice indices were analyzed according to infarct volumes (< 10 mL, ≥ 10 mL), number of infarcts (≤ 5, 6-10, ≥ 11), and b-value of 1000 (b1000) signal intensities (< 50, 50-100, > 100), time intervals to DWI, and DWI protocols. RESULTS: The CNN algorithms were significantly superior to conventional algorithms (p < 0.001). Dice indices for the CNN algorithms were 0.85 for U-Net and DenseNet and 0.86 for an ensemble of U-Net and DenseNet, while the indices were 0.58 for ADC-b1000 and b1000-ADC and 0.52 for the commercial ADC algorithm. The Dice indices for small and large lesions, respectively, were 0.81 and 0.88 with U-Net, 0.80 and 0.88 with DenseNet, and 0.82 and 0.89 with the ensemble of U-Net and DenseNet. The CNN algorithms showed significant differences in Dice indices according to infarct volumes (p < 0.001). CONCLUSION: The CNN algorithm for automatic segmentation of acute ischemic lesions on DWI achieved Dice indices greater than or equal to 0.85 and showed superior performance to conventional algorithms.


Subject(s)
Algorithms , Brain Ischemia/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Nerve Net/diagnostic imaging , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Radiologists , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...