Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res ; 40(2): 313-323, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525136

ABSTRACT

Polypropylene (PP), polystyrene (PS), and polyethylene (PE) plastics are commonly used in household items such as electronic housings, food packaging, bottles, bags, toys, and roofing membranes. The presence of inhalable microplastics in indoor air has become a topic of concern as many people spent extended periods of time indoors during the COVID-19 pandemic lockdown restrictions, however, the toxic effects on the respiratory system are not properly understood. We examined the toxicity of PP, PS, and PE microplastic fragments in the pulmonary system of C57BL/6 mice. For 14 days, mice were intratracheally instilled 5 mg/kg PP, PS, and PE daily. The number of inflammatory cells such as macrophages, neutrophils, and eosinophils in the bronchoalveolar lavage fluid (BALF) of PS-instilled mice was significantly higher than that in the vehicle control (VC). The levels of inflammatory cytokines and chemokines in BALF of PS-instilled mice increased compared to the VC. However, the inflammatory responses in PP- and PE-stimulated mice were not significantly different from those in the VC group. We observed elevated protein levels of toll-like receptor (TLR) 2 in the lung tissue of PP-instilled mice and TLR4 in the lung tissue of PS-instilled mice compared with those to the VC, while TLR1, TLR5, and TLR6 protein levels remained unchanged. Phosphorylation of nuclear factor kappa B (NF-κB) and IĸB-α increased significantly in PS-instilled mice compared with that in VC. Furthermore, Nucleotide­binding oligomerization domain­like receptor family pyrin domain­containing 3 (NLRP3) inflammasome components including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and Caspase-1 in the lung tissue of PS-instilled mice increased compared with that in the VC, but not in PP- and PE-instilled mice. These results suggest that PS microplastic fragment stimulation induces pulmonary inflammation due to NF-ĸB and NLRP3 inflammasome activation by the TLR4 pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00224-x.

2.
Genes (Basel) ; 14(3)2023 02 24.
Article in English | MEDLINE | ID: mdl-36980838

ABSTRACT

The progressive degeneration of granular corneal dystrophy type 2 (GCD2) corneal fibroblasts is associated with altered mitochondrial function, but the underlying mechanisms are incompletely understood. We investigated whether an imbalance of mitochondrial dynamics contributes to mitochondrial dysfunction of GCD2 corneal fibroblasts. Transmission electron microscopy revealed several small, structurally abnormal mitochondria with altered cristae morphology in GCD2 corneal fibroblasts. Confocal microscopy showed enhanced mitochondrial fission and fragmented mitochondrial tubular networks. Western blotting revealed higher levels of MFN1, MFN2, and pDRP1 and decreased levels of OPA1 and FIS1 in GCD2. OPA1 reduction by short hairpin RNA (shRNA) resulted in fragmented mitochondrial tubular networks and increased susceptibility to mitochondrial stress-induced apoptosis. A decrease in the mitochondrial biogenesis-related transcription factors NRF1 and PGC1α was observed, while there was an increase in the mitochondrial membrane proteins TOM20 and TIM23. Additionally, reduced levels of mitochondrial DNA (mtDNA) were exhibited in GCD2 corneal fibroblasts. These observations suggest that altered mitochondrial fission/fusion and biogenesis are the critical molecular mechanisms that cause mitochondrial dysfunction contributing to the degeneration of GCD2 corneal fibroblasts.


Subject(s)
Corneal Dystrophies, Hereditary , GTP Phosphohydrolases , Humans , Apoptosis/genetics , Corneal Dystrophies, Hereditary/genetics , Fibroblasts/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mitochondria/genetics , Mitochondria/metabolism
3.
Part Fibre Toxicol ; 20(1): 2, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36624477

ABSTRACT

BACKGROUND: Polypropylene (PP) is used in various products such as disposable containers, spoons, and automobile parts. The disposable masks used for COVID-19 prevention mainly comprise PP, and the disposal of such masks is concerning because of the potential environmental pollution. Recent reports have suggested that weathered PP microparticles can be inhaled, however, the inhalation toxicology of PP microparticles is poorly understood. RESULTS: Inflammatory cell numbers, reactive oxygen species (ROS) production, and the levels of inflammatory cytokines and chemokines in PP-instilled mice (2.5 or 5 mg/kg) increased significantly compared to with those in the control. Histopathological analysis of the lung tissue of PP-stimulated mice revealed lung injuries, including the infiltration of inflammatory cells into the perivascular/parenchymal space, alveolar epithelial hyperplasia, and foamy macrophage aggregates. The in vitro study indicated that PP stimulation causes mitochondrial dysfunction including mitochondrial depolarization and decreased adenosine triphosphate (ATP) levels. PP stimulation led to cytotoxicity, ROS production, increase of inflammatory cytokines, and cell deaths in A549 cells. The results showed that PP stimulation increased the p-p38 and p-NF-κB protein levels both in vivo and in vitro, while p-ERK and p-JNK remained unchanged. Interestingly, the cytotoxicity that was induced by PP exposure was regulated by p38 and ROS inhibition in A549 cells. CONCLUSIONS: These results suggest that PP stimulation may contribute to inflammation pathogenesis via the p38 phosphorylation-mediated NF-κB pathway as a result of mitochondrial damage.


Subject(s)
Microplastics , Pneumonia , Polypropylenes , Animals , Mice , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Microplastics/toxicity , NF-kappa B/metabolism , Pneumonia/chemically induced , Polypropylenes/toxicity , Reactive Oxygen Species/metabolism
4.
Molecules ; 27(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432032

ABSTRACT

Globally, plastics are used in various products. Concerns regarding the human body's exposure to plastics and environmental pollution have increased with increased plastic use. Microplastics can be detected in the atmosphere, leading to potential human health risks through inhalation; however, the toxic effects of microplastic inhalation are poorly understood. In this study, we examined the pulmonary toxicity of polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) in C57BL/6, BALB/c, and ICR mice strains. Mice were intratracheally instilled with 5 mg/kg of PS, PP, or PVC daily for two weeks. PS stimulation increased inflammatory cells in the bronchoalveolar lavage fluid (BALF) of C57BL/6 and ICR mice. Histopathological analysis of PS-instilled C57BL/6 and PP-instilled ICR mice showed inflammatory cell infiltration. PS increased the NLR family pyrin domain containing 3 (NLRP3) inflammasome components in the lung tissue of C57BL/6 and ICR mice, while PS-instilled BALB/c mice remained unchanged. PS stimulation increased inflammatory cytokines, including IL-1ß and IL-6, in BALF of C57BL/6 mice. PP-instilled ICR mice showed increased NLRP3, ASC, and Caspase-1 in the lung tissue compared to the control groups and increased IL-1ß levels in BALF. These results could provide baseline data for understanding the pulmonary toxicity of microplastic inhalation.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Microplastics , Mice , Humans , Animals , Polyvinyl Chloride/toxicity , Polystyrenes/toxicity , Plastics , Polypropylenes/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein , Mice, Inbred ICR , Mice, Inbred C57BL , Mice, Inbred BALB C
5.
J Cell Mol Med ; 24(18): 10343-10355, 2020 09.
Article in English | MEDLINE | ID: mdl-32667742

ABSTRACT

Granular corneal dystrophy type 2 (GCD2) is the most common form of transforming growth factor ß-induced (TGFBI) gene-linked corneal dystrophy and is pathologically characterized by the corneal deposition of mutant-TGFBIp. The defective autophagic degradation of pathogenic mutant-TGFBIp has been shown in GCD2; however, its exact mechanisms are unknown. To address this, we investigated lysosomal functions using corneal fibroblasts. Levels of cathepsins K and L (CTSK and CTSL) were significantly decreased in GCD2 cells, but of cathepsins B and D (CTSB and CTSD) did not change. The maturation of the pro-enzymes to their active forms (CTSB, CTSK and CTSL) was inhibited in GCD2 cells. CTSL enzymes directly degraded both LC3 (autophagosomes marker) and mutant-TGFBIp. Exogenous CTSL expression dramatically reduced mutant-TGFBIp in GCD2 cells, but not TGFBIp in WT cells. An increased lysosomal pH and clustered lysosomal perinuclear position were found in GCD2 cells. Transcription factor EB (TFEB) levels were significantly reduced in GCD2 cells, compared to WT. Notably, exogenous TFEB expression improved mutant-TGFBIp clearance and lysosomal abnormalities in GCD2 cells. Taken together, lysosomal dysfunction in the corneal fibroblasts underlies the pathogenesis of GCD2, and TFEB has a therapeutic potential in the treatment of GCD2.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cornea/pathology , Corneal Dystrophies, Hereditary/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Lysosomes/metabolism , Apoptosis , Cathepsins/metabolism , Cell Nucleus/metabolism , Extracellular Matrix Proteins/metabolism , Humans , Mutant Proteins/metabolism , Transforming Growth Factor beta/metabolism
6.
Exp Eye Res ; 182: 167-174, 2019 05.
Article in English | MEDLINE | ID: mdl-30930125

ABSTRACT

Alzheimer's disease (AD) primarily affects the brain and is the most common form of dementia worldwide. Despite more than a century of research, there are still no early biomarkers for AD. It has been reported that AD affects the eye, which is more accessible for imaging than the brain; however, links with the cornea have not been evaluated. To investigate whether the cornea could be used to identify possible diagnostic indicators of AD, we analyzed the proteolytic processing and isoforms of amyloid precursor protein (APP) and evaluated the expression of AD-related genes and proteins in corneal fibroblasts from wild-type (WT) corneas and corneas from patients with granular corneal dystrophy type 2 (GCD2), which is related to amyloid formation in the cornea. Reverse transcription polymerase chain reaction (RT-PCR) analysis was used to assess the expression of AD-related genes, i.e., APP, ADAM10, BACE1, BACE2, PSEN1, NCSTN, IDE, and NEP. RT-PCR and DNA sequencing analysis demonstrated that isoforms of APP770 and APP751, but not APP695, were expressed in corneal fibroblasts. Moreover, the mRNA ratio of APP770/APP751 isoforms was approximately 4:1. Western blot analysis also demonstrated the expression of a disintegrin and metalloprotease domain-containing protein 10 (ADAM10), beta-site APP-cleaving enzyme 1 (BACE1), nicastrin, insulin degradation enzyme, and neprilysin in corneal fibroblasts. Among these targets, the levels of immature ADAM10 and BACE1 protein were significantly increased in GCD2 cells. The expression levels of APP, ADAM10, BACE1, and transforming growth factor-beta-induced protein (TGFBIp) were also detected by western blot in human corneal epithelium. We also investigated the effects of inhibition of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems (UPS) on APP processing and metabolism. These pathway inhibitors accumulated APP, α-carboxy-terminal fragments (CTFs), ß-CTFs, and the C-terminal APP intracellular domain (AICD) in corneal fibroblasts. Analysis of microRNAs (miRNAs) revealed that miR-9 and miR-181a negatively coregulated BACE1 and TGFBIp, which was directly associated with the pathogenesis of AD and GCD2, respectively. Immunohistochemical analysis indicated that APP and BACE1 were distributed in corneal stroma cells, epithelial cells, and the retinal layer in mice. Collectively, we propose that the cornea, which is the transparent outermost layer of the eye and thus offers easy accessibility, could be used as a potential biomarker for AD diagnosis and progression.


Subject(s)
Alzheimer Disease/complications , Amyloid beta-Protein Precursor/genetics , Corneal Dystrophies, Hereditary/genetics , Epithelium, Corneal/metabolism , Gene Expression Regulation , RNA/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/biosynthesis , Animals , Biomarkers/metabolism , Blotting, Western , Cells, Cultured , Corneal Dystrophies, Hereditary/metabolism , Corneal Dystrophies, Hereditary/pathology , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Immunohistochemistry , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...