Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Sci Rep ; 14(1): 11162, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750095

ABSTRACT

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis. Yet, how lipid loading modulates Mφ inflammatory responses remains unclear. We endeavored to gain mechanistic insights into how pre-loading with free cholesterol modulates Mφ metabolism upon LPS-induced TLR4 signaling. We found that activities of prolyl hydroxylases (PHDs) and factor inhibiting HIF (FIH) are higher in cholesterol loaded Mφs post-LPS stimulation, resulting in impaired HIF-1α stability, transactivation capacity and glycolysis. In RAW264.7 cells expressing mutated HIF-1α proteins resistant to PHDs and FIH activities, cholesterol loading failed to suppress HIF-1α function. Cholesterol accumulation induced oxidative stress that enhanced NRF2 protein stability and triggered a NRF2-mediated antioxidative response prior to and in conjunction with LPS stimulation. LPS stimulation increased NRF2 mRNA and protein expression, but it did not enhance NRF2 protein stability further. NRF2 deficiency in Mφs alleviated the inhibitory effects of cholesterol loading on HIF-1α function. Mutated KEAP1 proteins defective in redox sensing expressed in RAW264.7 cells partially reversed the effects of cholesterol loading on NRF2 activation. Collectively, we showed that cholesterol accumulation in Mφs induces oxidative stress and NRF2 stabilization, which when combined with LPS-induced NRF2 expression leads to enhanced NRF2-mediated transcription that ultimately impairs HIF-1α-dependent glycolytic and inflammatory responses.


Subject(s)
Cholesterol , Hypoxia-Inducible Factor 1, alpha Subunit , Lipopolysaccharides , Macrophages , NF-E2-Related Factor 2 , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Animals , Mice , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , Cholesterol/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Oxidative Stress/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Up-Regulation/drug effects , Toll-Like Receptor 4/metabolism
2.
Mol Metab ; 85: 101958, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763495

ABSTRACT

OBJECTIVE: The prevalence of metabolic diseases is increasing globally at an alarming rate; thus, it is essential that effective, accessible, low-cost therapeutics are developed. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that tightly regulate glucose homeostasis and lipid metabolism and are important drug targets for the treatment of type 2 diabetes and dyslipidemia. We previously identified LDT409, a fatty acid-like compound derived from cashew nut shell liquid, as a novel pan-active PPARα/γ/δ compound. Herein, we aimed to assess the efficacy of LDT409 in vivo and investigate the molecular mechanisms governing the actions of the fatty acid mimetic LDT409 in diet-induced obese mice. METHODS: C57Bl/6 mice (6-11-month-old) were fed a chow or high fat diet (HFD) for 4 weeks; mice thereafter received once daily intraperitoneal injections of vehicle, 10 mg/kg Rosiglitazone, 40 mg/kg WY14643, or 40 mg/kg LDT409 for 18 days while continuing the HFD. During treatments, body weight, food intake, glucose and insulin tolerance, energy expenditure, and intestinal lipid absorption were measured. On day 18 of treatment, tissues and plasma were collected for histological, molecular, and biochemical analysis. RESULTS: We found that treatment with LDT409 was effective at reversing HFD-induced obesity and associated metabolic abnormalities in mice. LDT409 lowered food intake and hyperlipidemia, while improving insulin tolerance. Despite being a substrate of both PPARα and PPARγ, LDT409 was crucial for promoting hepatic fatty acid oxidation and reducing hepatic steatosis in HFD-fed mice. We also highlighted a role for LDT409 in white and brown adipocytes in vitro and in vivo where it decreased fat accumulation, increased lipolysis, induced browning of WAT, and upregulated thermogenic gene Ucp1. Remarkably, LDT409 reversed HFD-induced weight gain back to chow-fed control levels. We determined that the LDT409-induced weight-loss was associated with a combination of increased energy expenditure (detectable before weight loss was apparent), decreased food intake, increased systemic fat utilization, and increased fecal lipid excretion in HFD-fed mice. CONCLUSIONS: Collectively, LDT409 represents a fatty acid mimetic that generates a uniquely favorable metabolic response for the treatment of multiple abnormalities including obesity, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and diabetes. LDT409 is derived from a highly abundant natural product-based starting material and its development could be pursued as a therapeutic solution to the global metabolic health crisis.

3.
Endocrinology ; 165(5)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38578954

ABSTRACT

In the classical insulin target tissues of liver, muscle, and adipose tissue, chronically elevated levels of free fatty acids (FFA) impair insulin signaling. Insulin signaling molecules are also present in ß-cells where they play a role in ß-cell function. Therefore, inhibition of the insulin/insulin-like growth factor 1 pathway may be involved in fat-induced ß-cell dysfunction. To address the role of ß-cell insulin resistance in FFA-induced ß-cell dysfunction we co-infused bisperoxovanadate (BPV) with oleate or olive oil for 48 hours in rats. BPV, a tyrosine phosphatase inhibitor, acts as an insulin mimetic and is devoid of any antioxidant effect that could prevent ß-cell dysfunction, unlike most insulin sensitizers. Following fat infusion, rats either underwent hyperglycemic clamps for assessment of ß-cell function in vivo or islets were isolated for ex vivo assessment of glucose-stimulated insulin secretion (GSIS). We also incubated islets with oleate or palmitate and BPV for in vitro assessment of GSIS and Akt (protein kinase B) phosphorylation. Next, mice with ß-cell specific deletion of PTEN (phosphatase and tensin homolog; negative regulator of insulin signaling) and littermate controls were infused with oleate for 48 hours, followed by hyperglycemic clamps or ex vivo evaluation of GSIS. In rat experiments, BPV protected against fat-induced impairment of ß-cell function in vivo, ex vivo, and in vitro. In mice, ß-cell specific deletion of PTEN protected against oleate-induced ß-cell dysfunction in vivo and ex vivo. These data support the hypothesis that ß-cell insulin resistance plays a causal role in FFA-induced ß-cell dysfunction.


Subject(s)
Insulin Resistance , Insulin-Secreting Cells , PTEN Phosphohydrolase , Animals , Insulin Resistance/physiology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Rats , Mice , Male , PTEN Phosphohydrolase/metabolism , Oleic Acid/pharmacology , Insulin/metabolism , Mice, Inbred C57BL , Insulin Secretion/drug effects , Fatty Acids, Nonesterified/metabolism , Rats, Sprague-Dawley
4.
Sci Transl Med ; 16(737): eabm2090, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38446901

ABSTRACT

Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females. Male human PTECs showed increased glucose and glutamine fluxes to the TCA cycle, whereas female human PTECs showed increased pyruvate content. The male human PTEC phenotype was enhanced by dihydrotestosterone and mediated by the transcription factor HNF4A and histone demethylase KDM6A. In mice where sex chromosomes either matched or did not match gonadal sex, male gonadal sex contributed to the kidney metabolism differences between males and females. A blood metabolomics analysis in a cohort of adolescents with or without diabetes showed increased TCA cycle metabolites in males. In a second cohort of adults with diabetes, females without DKD had higher serum pyruvate concentrations than did males with or without DKD. Serum pyruvate concentrations positively correlated with the estimated glomerular filtration rate, a measure of kidney function, and negatively correlated with all-cause mortality in this cohort. In a third cohort of adults with CKD, male sex and diabetes were associated with increased plasma TCA cycle metabolites, which correlated with all-cause mortality. These findings suggest that differences in male and female kidney metabolism may contribute to sex-dependent outcomes in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Adolescent , Adult , Humans , Female , Male , Animals , Mice , Sex Characteristics , Pyruvates , Glucose , Kidney
5.
Immunohorizons ; 8(1): 57-73, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38193847

ABSTRACT

The accumulation of lipid and the formation of macrophage foam cells is a hallmark of atherosclerosis, a chronic inflammatory disease. To better understand the role of macrophage lipid accumulation in inflammation during atherogenesis, we studied early molecular events that follow the accumulation of oxidized low-density lipoprotein (oxLDL) in cultured mouse macrophages. We previously showed that oxLDL accumulation downregulates the inflammatory response in conjunction with downregulation of late-phase glycolysis. In this study, we show that within hours after LPS stimulation, macrophages with accumulated oxLDL maintain early-phase glycolysis but selectively downregulate activation of AKT2, one of three AKT isoforms. The inhibition of AKT2 activation reduced LPS-induced ATP citrate lyase activation, acetyl-CoA production, and acetylation of histone 3 lysine 27 (H3K27ac) in certain inflammatory gene promoters. In contrast to oxLDL, multiple early LPS-induced signaling pathways were inhibited in macrophages with accumulated cholesterol, including TBK1, AKT1, AKT2, MAPK, and NF-κB, and early-phase glycolysis. The selective inhibition of LPS-induced AKT2 activation was dependent on the generation of mitochondrial oxygen radicals during the accumulation of oxLDL in macrophages prior to LPS stimulation. This is consistent with increased oxidative phosphorylation, fatty acid synthesis, and oxidation pathways found by comparative transcriptomic analyses of oxLDL-loaded versus control macrophages. Our study shows a functional connection between oxLDL accumulation, inactivation of AKT2, and the inhibition of certain inflammatory genes through epigenetic changes that occur soon after LPS stimulation, independent of early-phase glycolysis.


Subject(s)
ATP Citrate (pro-S)-Lyase , Atherosclerosis , Lipoproteins, LDL , Animals , Mice , Acetyl Coenzyme A , Acetylation , Acyltransferases , ATP Citrate (pro-S)-Lyase/genetics , Lipopolysaccharides , Macrophages , Epigenesis, Genetic
6.
Diabetes ; 72(12): 1751-1765, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37699387

ABSTRACT

Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes. Here, we examined the pleiotropic role of caspase 8 in adipocytes and obesity-associated insulin resistance. Caspase 8 expression was increased in adipocytes from mice and humans with obesity and insulin resistance. Treatment of 3T3-L1 adipocytes with caspase 8 inhibitor Z-IETD-FMK decreased both death receptor-mediated signaling and targets of nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling. We generated novel adipose tissue and adipocyte-specific caspase 8 knockout mice (aP2Casp8-/- and adipoqCasp8-/-). Both males and females had improved glucose tolerance in the setting of high-fat diet (HFD) feeding. Knockout mice also gained less weight on HFD, with decreased adiposity, adipocyte size, and hepatic steatosis. These mice had decreased adipose tissue inflammation and decreased activation of canonical and noncanonical NF-κB signaling. Furthermore, they demonstrated increased energy expenditure, core body temperature, and UCP1 expression. Adipocyte-specific activation of Ikbkb or housing mice at thermoneutrality attenuated improvements in glucose tolerance. These data demonstrate an important role for caspase 8 in mediating adipocyte cell death and inflammation to regulate glucose and energy homeostasis. ARTICLE HIGHLIGHTS: Caspase 8 is increased in adipocytes from mice and humans with obesity and insulin resistance. Knockdown of caspase 8 in adipocytes protects mice from glucose intolerance and weight gain on a high-fat diet. Knockdown of caspase 8 decreases Fas signaling, as well as canonical and noncanonical nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling in adipose tissue. Improved glucose tolerance occurs via reduced activation of NF-κB signaling and via induction of UCP1 in adipocytes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Male , Female , Animals , Mice , NF-kappa B/metabolism , Insulin Resistance/genetics , Caspase 8/genetics , Caspase 8/metabolism , Diabetes Mellitus, Type 2/metabolism , Mice, Knockout , Adipocytes/metabolism , Obesity/genetics , Obesity/metabolism , Diet, High-Fat/adverse effects , Inflammation/metabolism , Glucose/metabolism , Apoptosis/genetics
7.
J Immunol ; 211(10): 1561-1577, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37756544

ABSTRACT

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.


Subject(s)
Atherosclerosis , Hypercholesterolemia , Humans , Mice , Animals , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/metabolism , NADP/metabolism , Macrophages/metabolism , Lipoproteins, LDL/metabolism , Glycolysis , Atherosclerosis/metabolism , Cholesterol/metabolism , Antioxidants/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
8.
Cell Rep Med ; 4(5): 101051, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37196633

ABSTRACT

Alterations in the microbiome correlate with improved metabolism in patients following bariatric surgery. While fecal microbiota transplantation (FMT) from obese patients into germ-free (GF) mice has suggested a significant role of the gut microbiome in metabolic improvements following bariatric surgery, causality remains to be confirmed. Here, we perform paired FMT from the same obese patients (BMI > 40; four patients), pre- and 1 or 6 months post-Roux-en-Y gastric bypass (RYGB) surgery, into Western diet-fed GF mice. Mice colonized by FMT from patients' post-surgery stool exhibit significant changes in microbiota composition and metabolomic profiles and, most importantly, improved insulin sensitivity compared with pre-RYGB FMT mice. Mechanistically, mice harboring the post-RYGB microbiome show increased brown fat mass and activity and exhibit increased energy expenditure. Moreover, improvements in immune homeostasis within the white adipose tissue are also observed. Altogether, these findings point to a direct role for the gut microbiome in mediating improved metabolic health post-RYGB surgery.


Subject(s)
Bariatric Surgery , Gastrointestinal Microbiome , Insulin Resistance , Mice , Animals , Adipose Tissue, Brown , Obesity/surgery , Energy Metabolism
9.
Bioeng Transl Med ; 8(3): e10461, 2023 May.
Article in English | MEDLINE | ID: mdl-37206227

ABSTRACT

Tumor cells can respond to therapeutic agents by morphologic alternations including formation of tunneling nanotubes. Using tomographic microscope, which can detect the internal structure of cells, we found that mitochondria within breast tumor cells migrate to an adjacent tumor cell through a tunneling nanotube. To investigate the relationship between mitochondria and tunneling nanotubes, mitochondria were passed through a microfluidic device that mimick tunneling nanotubes. Mitochondria, through the microfluidic device, released endonuclease G (Endo G) into adjacent tumor cells, which we referred to herein as unsealed mitochondria. Although unsealed mitochondria did not induce cell death by themselves, they induced apoptosis of tumor cells in response to caspase-3. Importantly, Endo G-depleted mitochondria were ineffective as lethal agents. Moreover, unsealed mitochondria had synergistic apoptotic effects with doxorubicin in further increasing tumor cell death. Thus, we show that the mitochondria of microfluidics can provide novel strategies toward tumor cell death.

10.
Cell Biosci ; 13(1): 16, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36691085

ABSTRACT

Neurodegenerative disorders are accompanied by neuronal degeneration and glial dysfunction, resulting in cognitive, psychomotor, and behavioral impairment. Multiple factors including genetic, environmental, metabolic, and oxidant overload contribute to disease progression. Recent evidences suggest that metabolic syndrome is linked to various neurodegenerative diseases. Metabolic syndrome (MetS) is known to be accompanied by symptoms such as hyperglycemia, abdominal obesity, hypertriglyceridemia, and hypertension. Despite advances in knowledge about the pathogenesis of neurodegenerative disorders, effective treatments to combat neurodegenerative disorders caused by MetS have not been developed to date. Insulin growth factor-1 (IGF-1) deficiency has been associated with MetS-related pathologies both in-vivo and in-vitro. IGF-1 is essential for embryonic and adult neurogenesis, neuronal plasticity, neurotropism, angiogenesis, metabolic function, and protein clearance in the brain. Here, we review the evidence for the potential therapeutic effects of IGF-1 in the neurodegeneration related to metabolic syndrome. We elucidate how IGF-1 may be involved in molecular signaling defects that occurs in MetS-related neurodegenerative disorders and highlight the importance of IGF-1 as a potential therapeutic target in MetS-related neurological diseases.

11.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-38529494

ABSTRACT

A dysregulated adaptive immune system is a key feature of aging, and is associated with age-related chronic diseases and mortality. Most notably, aging is linked to a loss in the diversity of the T cell repertoire and expansion of activated inflammatory age-related T cell subsets, though the main drivers of these processes are largely unknown. Here, we find that T cell aging is directly influenced by B cells. Using multiple models of B cell manipulation and single-cell omics, we find B cells to be a major cell type that is largely responsible for the age-related reduction of naive T cells, their associated differentiation towards pathogenic immunosenescent T cell subsets, and for the clonal restriction of their T cell receptor (TCR). Accordingly, we find that these pathogenic shifts can be therapeutically targeted via CD20 monoclonal antibody treatment. Mechanistically, we uncover a new role for insulin receptor signaling in influencing age-related B cell pathogenicity that in turn induces T cell dysfunction and a decline in healthspan parameters. These results establish B cells as a pivotal force contributing to age-associated adaptive immune dysfunction and healthspan outcomes, and suggest new modalities to manage aging and related multi-morbidity.

12.
J Biol Eng ; 16(1): 29, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36319989

ABSTRACT

Chronic myeloid leukemia is generally required bone marrow biopsy for diagnosis. Although examining peripheral blood is less invasive, it has not been fully validated as a routine diagnostic test due to suboptimal sensitivity. To overcome this limitation, a number of methodologies based on microfluidics have been developed for sorting circulating tumor cells from peripheral blood of patients with leukemia.In order to develop a more convenient method, we designed an analysis protocol using motion microscopy that amplifies cellular micro motions in a captured video by re-rendering pixels to generate extreme magnified visuals. Intriguingly, no fluctuations around leukemic myeloblasts were observed with a motion microscope at any wavelength of 0-10 Hz. However, use of 0.05% hyaluronic acid, one type of non-newtonian fluid, demonstrated fluctuations around leukemic myeloblasts under conditions of 25 µm/s and 0.5-1.5 Hz with a motion microscope.Thus, the non-invasive detection of leukemic myeloblasts can offer a valuable supplementary diagnostic tool for assessment of drug efficacy for monitoring patients with chronic myeloid leukemia.

13.
Biol Proced Online ; 24(1): 16, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36289539

ABSTRACT

BACKGROUND: Micro RNA of Marsupenaeus japonicas has been known to promote apoptosis of tumor cells. However, the detailed mechanisms are not well understood. RESULTS: Using tomographic microscope, which can detect the internal structure of cells, we observed breast tumor cells following treatment of the miRNA. Intriguingly, we found that mitochondria migrate to an adjacent tumor cells through a tunneling nanotube. To recapitulate this process, we engineered a microfluidic device through which mitochondria were transferred. We show that this mitochondrial transfer process released endonuclease G (Endo G) into tumor cells, which we referred to herein as unsealed mitochondria. Importantly, Endo G depleted mitochondria alone did not have tumoricidal effects. Moreover, unsealed mitochondria had synergistic apoptotic effects with subtoxic dose of doxorubicin thereby mitigating cardiotoxicity. CONCLUSIONS: Together, we show that the mitochondrial transfer through microfluidics can provide potential novel strategies towards tumor cell death.

14.
JMIR Res Protoc ; 11(3): e35700, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35319467

ABSTRACT

BACKGROUND: Posttransplant metabolic syndrome (PTMS) is a common contributor to morbidity and mortality among solid organ transplant recipients in the late posttransplant period (≥1 year). Patients diagnosed with PTMS are at a higher risk of cardiovascular disease and frequently experience decreased physical function and health-related quality of life (HRQL). Studies in the early posttransplant period (<1 year) have shown the benefits of facility-based exercise training on physical function and HRQL, but have not evaluated the effects on metabolic risk factors. It remains unclear whether home-based exercise programs are feasible and can be delivered at a sufficient exercise dose to have effects on PTMS. This protocol outlines the methodology of a randomized controlled trial of a partly supervised home-based exercise program in lung transplant (LTx) and orthotopic liver transplant (OLT) recipients. OBJECTIVE: This study aims to evaluate the feasibility (ie, recruitment rate, program adherence, attrition, safety, and participant satisfaction) of a 12-week individualized, home-based aerobic and resistance training program in LTx and OLT recipients initiated 12 to 18 months after transplantation, and to assess estimates of intervention efficacy on metabolic risk factors, exercise self-efficacy, and HRQL. METHODS: In total, 20 LTx and 20 OLT recipients with ≥2 cardiometabolic risk factors at 12 to 18 months after transplantation will be randomized to an intervention (home-based exercise training) or control group. The intervention group will receive an individualized exercise prescription comprising aerobic and resistance training, 3 to 5 times a week for 12 weeks. Participants will meet on a weekly basis (via videoconference) with a qualified exercise professional who will supervise exercise progression, provide support, and support exercise self-efficacy. Participants in both study groups will receive a counseling session on healthy eating with a dietitian at the beginning of the intervention. For the primary aim, feasibility will be assessed through recruitment rate, program adherence, satisfaction, attrition, and safety parameters. Secondary outcomes will be measured at baseline and 12 weeks, including assessments of metabolic risk factors (ie, insulin resistance, abdominal obesity, blood pressure, and cholesterol), HRQL, and exercise self-efficacy. Descriptive statistics will be used to summarize program feasibility and effect estimates (means and 95% CIs) for sample size calculations in future trials. RESULTS: Enrollment started in July 2021. It is estimated that the study period will be 18 months, with data collection to be completed by December 2022. CONCLUSIONS: A partly supervised home-based, individually tailored exercise program that promotes aerobic and resistance training and exercise self-efficacy may be an important intervention for improving the metabolic profile of LTx and OLT recipients with cardiometabolic risk factors. Thus, characterizing the feasibility and effect estimates of home-based exercise constitutes the first step in developing future clinical trials designed to reduce the high morbidity associated with PTMS. TRIAL REGISTRATION: ClinicalTrials.gov NCT04965142; https://clinicaltrials.gov/ct2/show/NCT04965142. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/35700.

15.
Commun Biol ; 5(1): 132, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35169231

ABSTRACT

Atherosclerosis is a chronic inflammatory condition in which macrophages play a major role. Janus kinase 2 (JAK2) is a pivotal molecule in inflammatory and metabolic signaling, and Jak2V617F activating mutation has recently been implicated with enhancing clonal hematopoiesis and atherosclerosis. To determine the essential in vivo role of macrophage (M)-Jak2 in atherosclerosis, we generate atherosclerosis-prone ApoE-null mice deficient in M-Jak2. Contrary to our expectation, these mice exhibit increased plaque burden with no differences in macrophage proliferation, recruitment or bone marrow clonal expansion. Notably, M-Jak2-deficient bone marrow derived macrophages show a significant defect in cholesterol efflux. Pharmacologic JAK2 inhibition with ruxolitinib also leads to defects in cholesterol efflux and accelerates atherosclerosis. Liver X receptor agonist abolishes the efflux defect and attenuates the accelerated atherosclerosis that occurs with M-Jak2 deficiency. Macrophages of individuals with the Jak2V617F mutation show increased efflux which is normalized when treated with a JAK2 inhibitor. Together, M-Jak2-deficiency leads to accelerated atherosclerosis primarily through defects in cholesterol efflux from macrophages.


Subject(s)
Atherosclerosis , Cholesterol , Janus Kinase 2 , Animals , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Janus Kinase 2/deficiency , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL
16.
EMBO J ; 41(4): e106825, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35023164

ABSTRACT

Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic ß-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.


Subject(s)
Aging/physiology , Ascorbic Acid/pharmacology , Diabetes Mellitus, Experimental/prevention & control , Retinoblastoma Protein/metabolism , Animals , Cellular Senescence/drug effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , E2F1 Transcription Factor/metabolism , Embryonic Development/genetics , Female , Fibroblasts/drug effects , Gene Knock-In Techniques , Insulin-Secreting Cells/pathology , Mice , Phosphorylation , Pregnancy , Retinoblastoma Protein/genetics , Telomere/genetics
17.
Diabetes Care ; 45(1): 3-22, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34782355

ABSTRACT

One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.


Subject(s)
Diabetes Mellitus , Precision Medicine , Canada , Diabetes Mellitus/therapy , Humans , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , National Institutes of Health (U.S.) , Phenotype , United States
18.
Diabetes ; 2021 11 13.
Article in English | MEDLINE | ID: mdl-34957490

ABSTRACT

One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.

19.
Diabetes ; 2021 11 15.
Article in English | MEDLINE | ID: mdl-34782351

ABSTRACT

One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.

20.
Can J Diabetes ; 45(8): 697-713, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34794897

ABSTRACT

One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.


Subject(s)
Diabetes Mellitus , Precision Medicine , Canada/epidemiology , Diabetes Mellitus/therapy , Humans , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , National Institutes of Health (U.S.) , Phenotype , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...