Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Respir Res ; 25(1): 198, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720340

ABSTRACT

BACKGROUND: The association between tuberculous fibrosis and lung cancer development has been reported by some epidemiological and experimental studies; however, its underlying mechanisms remain unclear, and the role of macrophage (MФ) polarization in cancer progression is unknown. The aim of the present study was to investigate the role of M2 Arg-1+ MФ in tuberculous pleurisy-assisted tumorigenicity in vitro and in vivo. METHODS: The interactions between tuberculous pleural effusion (TPE)-induced M2 Arg-1+ MФ and A549 lung cancer cells were evaluated. A murine model injected with cancer cells 2 weeks after Mycobacterium bovis bacillus Calmette-Guérin pleural infection was used to validate the involvement of tuberculous fibrosis to tumor invasion. RESULTS: Increased CXCL9 and CXCL10 levels of TPE induced M2 Arg-1+ MФ polarization of murine bone marrow-derived MФ. TPE-induced M2 Arg-1+ MФ polarization facilitated lung cancer proliferation via autophagy signaling and E-cadherin signaling in vitro. An inhibitor of arginase-1 targeting M2 Arg-1+ MФ both in vitro and in vivo significantly reduced tuberculous fibrosis-induced metastatic potential of lung cancer and decreased autophagy signaling and E-cadherin expression. CONCLUSION: Tuberculous pleural fibrosis induces M2 Arg-1+ polarization, and M2 Arg-1+ MФ contribute to lung cancer metastasis via autophagy and E-cadherin signaling. Therefore, M2 Arg-1+ tumor associated MФ may be a novel therapeutic target for tuberculous fibrosis-induced lung cancer progression.


Subject(s)
Arginase , Autophagy , Disease Progression , Lung Neoplasms , Macrophages , Signal Transduction , Animals , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/microbiology , Humans , Mice , Autophagy/physiology , Arginase/metabolism , Signal Transduction/physiology , Macrophages/metabolism , Macrophages/pathology , Tuberculosis, Pleural/pathology , Tuberculosis, Pleural/metabolism , A549 Cells , Mice, Inbred C57BL , Pleural Effusion/metabolism , Pleural Effusion/pathology , Cell Polarity/physiology
2.
Microorganisms ; 11(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37763972

ABSTRACT

Extracellular vesicles (EVs) regulate various cellular and immunological functions in human diseases. There is growing interest in the clinical role of microbial EVs in pneumonia. However, there is a lack of research on the correlation between lung microbiome with microbial EVs and the microbiome of other body sites in pneumonia. We investigated the co-occurrence of lung microbiome and plasma microbe-derived EVs (mEVs) in 111 samples obtained from 60 mechanically ventilated patients (41 pneumonia and 19 non-pneumonia cases). The microbial correlation between the two samples was compared between the pneumonia and non-pneumonia cases. Bacterial composition of the plasma mEVs was distinct from that of the lung microbiome. There was a significantly higher correlation between lung microbiome and plasma mEVs in non-pneumonia individuals compared to pneumonia patients. In particular, Acinetobacter and Lactobacillus genera had high correlation coefficients in non-pneumonia patients. This indicates a beneficial effect of mEVs in modulating host lung immune response through EV component transfer.

3.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328424

ABSTRACT

Extracellular matrix production by pleural mesothelial cells in response to Mycobacterium tuberculosis contributes to tuberculous fibrosis. NOX4 is involved in the pathogenesis of tuberculous fibrosis. In this study, we evaluated whether NOX4 gene-targeting microRNAs showed protective effects in tuberculosis fibrosis. TargetScan prediction software was used to identify candidate microRNAs that bind the 3' UTRs of NOX4, and microRNA-148a (miR-148a) was selected as the best miRNA candidate. A repressed and forced expression assay in Met5A cells was performed to investigate the causal relationship between miR-148a and NOX4. The role of miR-148a in tuberculous pleural fibrosis was studied using a murine model of Mycobacterium bovis bacillus Calmette-Guérin (BCG) pleural infection. Heat-killed M. tuberculosis (HKMT) induces NOX4 and POLDIP2 expression. We demonstrated the inhibitory effect of miR-148a on NOX4 and POLDIP2 expression. The increased expression of miR-148a suppressed HKMT-induced collagen-1A synthesis in PMC cells. In the BCG pleurisy model, miR-148a significantly reduced fibrogenesis and epithelial mesenchymal transition. High levels of miR-148a in tuberculous pleural effusion can be interpreted as a self-limiting homeostatic response. Our data indicate that miR-148a may protect against tuberculous pleural fibrosis by regulating NOX4 and POLDIP2.


Subject(s)
MicroRNAs , Mycobacterium tuberculosis , Tuberculosis , Animals , BCG Vaccine , Epithelial-Mesenchymal Transition/genetics , Fibrosis , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondrial Proteins/metabolism , Mycobacterium tuberculosis/metabolism , NADPH Oxidase 4/genetics , Nuclear Proteins/metabolism
4.
Cancers (Basel) ; 13(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567693

ABSTRACT

While a higher incidence of lung cancer in subjects with previous tuberculous infection has been reported in epidemiologic data, the mechanism by which previous tuberculosis affects lung cancer remains unclear. We investigated the role of NOX4 in tuberculous pleurisy-assisted tumorigenicity both in vitro and in vivo.Heat-killed Mycobacterium tuberculosis-stimulated mesothelial cells augmented the migrationand invasive potential of lung cancer cells in a NOX4-dependent manner. Mice with Mycobacterium bovis bacillus Calmette-Guérin (BCG) pleural infection exhibited increased expression of NOX4 and enhanced malignant potential of lung cancer compared to mice with intrathoracic injection of phosphate-buffered saline. The BCG+ KLN205 (KLN205 cancer cell injection after BCG treatment) NOX4 KO mice group showed reduced tuberculous fibrosis-promoted metastatic potential of lung cancer, increased autophagy, and decreased expression of TGF-ß, IL-6, and TNF-α compared to the BCG+KLN205 WT mice group. Finally, NOX4 silencing mitigated the malignant potential of A549 cells that was enhanced by tuberculous pleural effusion and restored autophagy signaling. Our results suggest that the NOX4-autophagy axis regulated by tuberculous fibrosis could result in enhanced tumorigenic potential and that NOX4-P62 might serve as a target for tuberculous fibrosis-induced lung cancer.

5.
J Transl Med ; 18(1): 464, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33287847

ABSTRACT

BACKGROUND: Healthcare-associated pneumonia (HCAP) is a heterogeneous disease. We redefined nursing-home- and hospital-associated infections (NHAI) group by revising existing HCAP risk factors. The NHAI group comprised nursing home residents with a poor functional status, or recent (past 90 days) hospitalization or recent (past 180 days) antibiotic therapy. Our aim was to determine whether respiratory microbiota profiles are related to newly defined NHAI group in critically ill patients on mechanical ventilation. METHODS: The 180 endotracheal aspirates (ETAs) from 60 mechanically ventilated ICU patients (NHAI group, n = 24; non-NHAI group, n = 36) were prospectively collected on days 1, 3 and 7 in a university hospital. The bacterial community profiles of the ETAs were explored by 16S rRNA gene sequencing. A phylogenetic-tree-based microbiome association test (TMAT), generalized linear mixed models (GLMMs), the Wilcoxon test and the reference frame method were used to analyze the association between microbiome abundance and disease phenotype. RESULTS: The relative abundance of the genus Corynebacterium was significantly higher in the pneumonia than in the non-pneumonia group. The microbiome analysis revealed significantly lower α-diversity in the NHAI group than in the non-NHAI group. In the analysis of ß-diversity, the structure of the microbiome also differed significantly between the two groups (weighted UniFrac distance, Adonis, p < 0.001). The abundance of Corynebacterium was significantly higher, and the relative abundances of Granulicatella, Staphylococcus, Streptococcus and Veillonella were significantly lower, in the NHAI group than in the non-NHAI group. CONCLUSIONS: The microbiota signature of the ETAs distinguished between patients with and without risk factors for NHAI. The lung microbiome may serve as a therapeutic target for NHAI group.


Subject(s)
Microbiota , Respiration, Artificial , Hospitalization , Humans , Nursing Homes , Phylogeny , RNA, Ribosomal, 16S/genetics
6.
EBioMedicine ; 38: 228-237, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30429089

ABSTRACT

BACKGROUND: We recently reported that myeloid sirtuin 6 (Sirt6) is a critical determinant of phenotypic switching and the migratory responses of macrophages. Given the prominent role of macrophages in the pathogenesis of rheumatoid arthritis (RA), we tested whether myeloid Sirt6 deficiency affects the development and exacerbation of RA. METHODS: Arthritis was induced in wild type and myeloid Sirt6 knockout (mS6KO) mice using collagen-induced and K/BxN serum transfer models. Sirt6 expression (or activity) and inflammatory activities were compared in peripheral blood mononuclear cells (PBMCs) and monocytes/macrophages obtained from patients with RA or osteoarthritis. FINDINGS: Based on clinical score, ankle thickness, pathology, and radiology, arthritis was more severe in mS6KO mice relative to wild type, with a greater accumulation of macrophages in the synovium. Consistent with these findings, myeloid Sirt6 deficiency increased the migration potential of macrophages toward synoviocyte-derived chemoattractants. Mechanistically, Sirt6 deficiency in macrophages caused an inflammation with increases in acetylation and protein stability of forkhead box protein O1. Conversely, ectopic overexpression of Sirt6 in knockout cells reduced the inflammatory responses. Lastly, PBMCs and monocytes/macrophages from RA patients exhibited lower expression of Sirt6 than those from patients with osteoarthritis, and their Sirt6 activity was inversely correlated with disease severity. INTERPRETATION: Our data identify a role of myeloid Sirt6 in clinical and experimental RA and suggest that myeloid Sirt6 may be an intriguing therapeutic target. FUND: Medical Research Center Program and Basic Science Research Program through the National Research Foundation of Korea.


Subject(s)
Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/metabolism , Macrophage Activation/genetics , Macrophages/metabolism , Myeloid Cells/metabolism , Sirtuins/deficiency , Animals , Arthritis, Experimental , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/pathology , Biomarkers , Cell Movement/immunology , Cell Survival , Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Gene Expression , Humans , Macrophage Activation/immunology , Macrophages/immunology , Mice , Models, Biological , Myeloid Cells/immunology , Proteasome Endopeptidase Complex/metabolism , Protein Transport , Proteolysis , Severity of Illness Index , Sirtuins/genetics , Sirtuins/metabolism , Synovial Membrane/immunology , Synovial Membrane/pathology
7.
Exp Mol Med ; 48: e221, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26987484

ABSTRACT

The type III histone deacetylase silent information regulator 1 (SIRT1) is an enzyme that is critical for the modulation of immune and inflammatory responses. However, the data on its role in rheumatoid arthritis (RA) are limited and controversial. To better understand how SIRT1 regulates adaptive immune responses in RA, we evaluated collagen-induced arthritis (CIA) in myeloid cell-specific SIRT1 knockout (mSIRT1 KO) and wild-type (WT) mice. Arthritis severity was gauged on the basis of clinical, radiographic and pathologic scores. Compared with their WT counterparts, the mSIRT1 KO mice exhibited less severe arthritis, which was less destructive to the joints. The expression levels of inflammatory cytokines, matrix metalloproteinases and ROR-γT were also reduced in the mSIRT1 KO mice compared with the WT mice and were paralleled by reductions in the numbers of Th1 and Th17 cells and CD80- or CD86-positive dendritic cells (DCs). In addition, impaired DC maturation and decreases in the Th1/Th17 immune response were observed in the mSIRT1 KO mice. T-cell proliferation was also investigated in co-cultures with antigen-pulsed DCs. In the co-cultures, the DCs from the mSIRT1 KO mice showed decreases in T-cell proliferation and the Th1/Th17 immune response. In this study, myeloid cell-specific deletion of SIRT1 appeared to suppress CIA by modulating DC maturation. Thus, a careful investigation of DC-specific SIRT1 downregulation is needed to gauge the therapeutic utility of agents targeting SIRT1 in RA.


Subject(s)
Arthritis, Experimental/etiology , Arthritis, Experimental/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Deletion , Myeloid Cells/metabolism , Sirtuin 1/genetics , Animals , Arthritis, Experimental/diagnosis , Cell Differentiation , Coculture Techniques , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/cytology , Disease Models, Animal , Gene Expression Regulation , Humans , Inflammation Mediators/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Mice , Mice, Knockout , NF-kappa B/metabolism , Synovitis/genetics , Synovitis/immunology , Synovitis/metabolism , Synovitis/pathology , Th1 Cells/cytology , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism , Transcription Factor AP-1/metabolism
8.
J Nutr Biochem ; 26(7): 713-20, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25910895

ABSTRACT

It is suggested that n-3 polyunsaturated fatty acids (PUFAs) can be used in the preventive or therapeutic management of rheumatoid arthritis (RA); however, controversial results have been reported. Here, we examined the effects of a decrease in the n-6/n-3 PUFA ratio on RA using fat-1 transgenic mice. First, we tested whether fat-1 expression modulated signaling pathways in fibroblast-like synoviocytes (FLSs) stimulated with tumor necrosis factor α (TNF-α). TNF-α activated p38 mitogen-activated protein kinase and increased phosphorylation of the signal transducer and activator of transcription 3 in wild type (WT) FLSs but not in fat-1 FLSs. Arthritis was induced by injection of K/BxN serum. Based on clinical scores, ankle thickness and pathological severity, we showed that WT mice developed clinically overt arthritis, whereas fat-1 mice showed attenuated arthritis. Moreover, fat-1 mice exhibited down-regulated local and systemic levels of inflammatory cytokines. Lastly, bone marrow-derived macrophages (BMMs) of WT mice differentiated into tartrate-resistant acid phosphatase-positive multinucleated osteoclasts, whereas the osteoclastogenenic process was suppressed in BMMs of fat-1 mice. The endogenous conversion of n-6 to n-3 PUFAs via fat-1 plays a key role in attenuation of RA; therefore, dietary supplementation of n-3 PUFAs may have therapeutic potential for the management of RA.


Subject(s)
Arthritis, Experimental/prevention & control , Arthritis, Rheumatoid/prevention & control , Caenorhabditis elegans Proteins/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Synovial Membrane/metabolism , Animals , Antirheumatic Agents/metabolism , Antirheumatic Agents/therapeutic use , Arthritis, Experimental/diet therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/diet therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Caenorhabditis elegans Proteins/genetics , Cells, Cultured , Dietary Fats, Unsaturated/metabolism , Dietary Fats, Unsaturated/therapeutic use , Dietary Supplements , Fatty Acid Desaturases/genetics , Fatty Acids, Omega-3/therapeutic use , Humans , Interleukin-6/metabolism , MAP Kinase Signaling System , Mice, Transgenic , Phosphorylation , Protein Processing, Post-Translational , Recombinant Proteins/metabolism , STAT3 Transcription Factor/metabolism , Synovial Membrane/cytology , Synovial Membrane/immunology , Synovial Membrane/pathology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Exp Mol Med ; 46: e109, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25104735

ABSTRACT

Hepatic ischemia/reperfusion (I/R) injury leads to oxidative stress and acute inflammatory responses that cause liver damage and have a considerable impact on the postoperative outcome. Much research has been performed to develop possible protective techniques. We aimed to investigate the efficacy of SPA0355, a synthetic thiourea analog, in an animal model of hepatic I/R injury. Male C57BL/6 mice underwent normothermic partial liver ischemia for 45 min followed by varying periods of reperfusion. The animals were divided into three groups: sham operated, I/R and SPA0355 pretreated. Pretreatment with SPA0355 protected against hepatic I/R injury, as indicated by the decreased levels of serum aminotransferase and reduced parenchymal necrosis and apoptosis. Liver synthetic function was also restored by SPA0355 as reflected by the prolonged prothrombin time. To gain insight into the mechanism involved in this protection, we measured the activity of nuclear factor-κB (NF-κB), which revealed that SPA0355 suppressed the nuclear translocation and DNA binding of NF-κB subunits. Concomitantly, the expression of NF-κB target genes such as IL-1ß, IL-6, TNF-α and iNOS was significantly downregulated. Lastly, the liver antioxidant enzymes superoxide dismutase, catalase and glutathione were upregulated by SPA0355 treatment, which correlated with the reduction in serum malondialdehyde. Our results suggest that SPA0355 pretreatment prior to I/R injury could be an effective method to reduce liver damage.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Benzoxazines/therapeutic use , Liver/drug effects , Liver/injuries , Reperfusion Injury/drug therapy , Thiourea/analogs & derivatives , Animals , Liver/immunology , Liver/pathology , Male , Mice, Inbred C57BL , NF-kappa B/immunology , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Signal Transduction/drug effects , Thiourea/therapeutic use
10.
Arthritis Rheumatol ; 66(4): 863-73, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24757139

ABSTRACT

OBJECTIVE: Insulin-like growth factor binding protein 3 (IGFBP-3) is known to interfere with the NF-κB signaling pathway, and it effectively promotes apoptosis in tumor cells by a variety of mechanisms. NF-κB activation and apoptosis resistance of fibroblast-like synoviocytes (FLS) play pivotal roles in rheumatoid arthritis (RA). This study was undertaken to evaluate whether IGFBP-3 has antiarthritic effects. METHODS: To deliver IGFBP-3, we used an adenovirus containing IGFBP-3 complementary DNA (AdIGFBP-3) or IGFBP-3 mutant that is devoid of IGF binding affinity but retains IGFBP-3 receptor binding ability (AdmtIGFBP-3). The regulatory roles of IGFBP-3 in inflammation and bone destruction were investigated in mice with collagen-induced arthritis (CIA). RESULTS: IGFBP-3 levels were significantly higher in patients with RA than in those with osteoarthritis (OA) and were notably higher in patients with active RA. AdIGFBP-3 suppressed NF-κB activation, chemokine production, and matrix metalloproteinase secretion induced by tumor necrosis factor α (TNFα) in RA FLS. AdIGFBP-3 sensitized RA FLS to TNFα-induced apoptosis in vitro and also significantly increased apoptosis in an in vivo model of Matrigel implants engrafted into immunodeficient mice. AdIGFBP-3-injected mice with CIA had attenuated arthritis severity and reduced radiologic and pathologic abnormalities. Moreover, AdIGFBP-3 down-regulated local and systemic levels of NF-κB-targeted proinflammatory cytokines. Of note, RA FLS and mice with CIA treated with AdmtIGFBP-3 exhibited similar effects as those treated with AdIGFBP-3. CONCLUSION: Our results suggest that both the inflammatory response and bone destruction are reduced with blockage of NF-κB activation and induction of apoptosis in RA FLS by IGFBP-3. Therefore, IGFBP-3 may have therapeutic potential in RA.


Subject(s)
Apoptosis/physiology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Synovial Membrane/metabolism , Animals , Apoptosis/drug effects , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Cytokines/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Inflammation/metabolism , Inflammation/pathology , Insulin-Like Growth Factor Binding Protein 3/genetics , Male , Matrix Metalloproteinases/metabolism , Mice , NF-kappa B/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Synovial Membrane/drug effects , Synovial Membrane/pathology , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...