Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 17(28): e2100639, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34081402

ABSTRACT

Developing high-efficiency and low-cost oxygen-evolving electrodes in anion exchange membrane (AEM) water electrolysis technology is one of the major challenges. Herein, it is demonstrated that the surface corrosion of a conventional Ni foam electrode in the presence of Fe3+ and V3+ cations can transform it into an electrode with a high catalytic performance for oxygen evolution reaction (OER). The corroded electrode consists of a ternary NiFeV layered double hydroxide (LDH) nanosheet array supported on the Ni foam surface. This NiFeV LDH electrode achieves an OER current density of 100 mA cm-2 at an overpotential of 272 mV in 1 m KOH, outperforming the IrO2 catalyst by 180 mV. Density functional theory calculations reveal that the unique structure and the presence of vanadium in NiFeV LDH play a key role in achieving improved OER activity. When coupled with a commercial Pt/C cathode catalyst, the resulting AEM water electrolyzer achieves a cell current density as high as 2.1 A cm-2 at a voltage of only 1.8 Vcell in 1 m KOH, which is similar to the performance of the proton exchange membrane water electrolyzer obtained from the IrO2 and Pt/C catalysts pair.

2.
Materials (Basel) ; 13(4)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32069967

ABSTRACT

In this study, simple electrospinning combined with pyrolysis were used to fabricate transition-metal-based-nanoparticle-incorporated carbon nanofiber (CNF) electrocatalysts for a high-efficiency hydrogen evolution reaction (HER) and overall water splitting. Co-CeO2 nanoparticle-incorporated carbon nanofibers (Co-CeO2@CNF) exhibit an outstanding electrocatalytic HER performance with an overpotential and Tafel slope of 92 mV and 54 mV/dec, respectively. For the counterpart, electrolysis, we incorporate the widely used Ni2Fe catalyst with a high oxygen evolution reaction (OER) activity into the carbon nanofiber (Ni2Fe@CNF). To evaluate their electrochemical properties for the overall water splitting, Co-CeO2@CNF and Ni2Fe@CNF were used as the HER and OER electrocatalysts in an alkaline electrolyzer. With the paired Co-CeO2@CNF and Ni2Fe@CNF electrodes, an overall water splitting current density of 10 mA/cm2 was achieved by applying 1.587 V across the electrodes with a remarkably lower overpotential of 257 mV compared to that of an electrolyzer comprised of Pt/C and IrO2 electrodes (400 mV). Owing to the conformal incorporation of nanoparticles into the CNF, the electrocatalysts exhibit significant long-term durability over 70 h of overall water splitting. This study provides rational designs of catalysts with high electrochemical catalytic activity and durability to achieve overall water splitting.

3.
Korean J Anesthesiol ; 72(4): 375-380, 2019 08.
Article in English | MEDLINE | ID: mdl-30424588

ABSTRACT

Background: Congenital central hypoventilation syndrome (CCHS) is a rare disorder characterized by alveolar hypoventilation and autonomic dysregulation. Patients with CCHS have adequate ventilation while awake but exhibit hypoventilation while asleep. More severely affected patients exhibit hypoventilation both when awake and when asleep. Case: Here, we report a case of successful spinal anesthesia and postoperative epidural analgesia in a patient with CCHS who underwent orthostatic surgery. Conclusions: In patients with CCHS, anesthesia is used with the goal of minimizing respiratory depression to avoid prolonged mechanical ventilation. Regional anesthesia should be considered where appropriate. Continuous oxygen saturation and end-tidal carbon dioxide monitoring must be available.


Subject(s)
Analgesia, Epidural/methods , Anesthesia, Spinal/methods , Hypoventilation/congenital , Sleep Apnea, Central/physiopathology , Adolescent , Carbon Dioxide/metabolism , Humans , Hypoventilation/physiopathology , Male , Oxygen/metabolism , Postoperative Period
4.
ACS Appl Mater Interfaces ; 9(46): 40628-40637, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29094592

ABSTRACT

The introduction of inorganic nanoparticles into carbon nanotube (CNT) papers can provide a versatile route to the fabrication of CNT papers with diverse functionalities, but it may lead to a reduction in their mechanical properties. Here, we describe a simple and effective strategy for the fabrication of mechanically robust magnetic CNT papers for electromagnetic interference (EMI) shielding and magnetomechanical actuation applications. The magnetic CNT papers were produced by vacuum filtration of an aqueous suspension of CNTs, CoFe2O4 nanoparticles, and poly(vinyl alcohol) (PVA). PVA plays a critical role in enhancing the mechanical strength of CNT papers. The magnetic CNT papers containing 73 wt % of CoFe2O4 nanoparticles exhibited high mechanical properties with Young's modulus of 3.2 GPa and tensile strength of 30.0 MPa. This magnetic CNT paper was successfully demonstrated as EMI shielding paper with shielding effectiveness of ∼30 dB (99.9%) in 0.5-1.0 GHz, and also as a magnetomechanical actuator in an audible frequency range from 200 to 20 000 Hz.

SELECTION OF CITATIONS
SEARCH DETAIL
...