Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Korean J Physiol Pharmacol ; 28(4): 335-344, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38926841

ABSTRACT

Diphenyleneiodonium (DPI) has been widely used as an inhibitor of NADPH oxidase (Nox) to discover its function in cardiac myocytes under various stimuli. However, the effects of DPI itself on Ca2+ signaling and contraction in cardiac myocytes under control conditions have not been understood. We investigated the effects of DPI on contraction and Ca2+ signaling and their underlying mechanisms using video edge detection, confocal imaging, and whole-cell patch clamp technique in isolated rat cardiac myocytes. Application of DPI suppressed cell shortenings in a concentration-dependent manner (IC50 of ≅0.17 µM) with a maximal inhibition of ~70% at ~100 µM. DPI decreased the magnitude of Ca2+ transient and sarcoplasmic reticulum Ca2+ content by 20%-30% at 3 µM that is usually used to remove the Nox activity, with no effect on fractional release. There was no significant change in the half-decay time of Ca2+ transients by DPI. The L-type Ca2+ current (ICa) was decreased concentration-dependently by DPI (IC50 of ≅40.3 µM) with ≅13.1%-inhibition at 3 µM. The frequency of Ca2+ sparks was reduced by 3 µM DPI (by ~25%), which was resistant to a brief removal of external Ca2+ and Na+. Mitochondrial superoxide level was reduced by DPI at 3-100 µM. Our data suggest that DPI may suppress L-type Ca2+ channel and RyR, thereby attenuating Ca2+-induced Ca2+ release and contractility in cardiac myocytes, and that such DPI effects may be related to mitochondrial metabolic suppression.

2.
J Hazard Mater ; 471: 134262, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640678

ABSTRACT

Cadmium (Cd) hazard is a serious limitation to plants, soils and environments. Cd-toxicity causes stunted growth, chlorosis, necrosis, and plant yield loss. Thus, ecofriendly strategies with understanding of molecular mechanisms of Cd-tolerance in plants is highly demandable. The Cd-toxicity caused plant growth retardation, leaf chlorosis and cellular damages, where the glutathione (GSH) enhanced plant fitness and Cd-toxicity in Brassica through Cd accumulation and antioxidant defense. A high-throughput proteome approach screened 4947 proteins, wherein 370 were differently abundant, 164 were upregulated and 206 were downregulated. These proteins involved in energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense response, heavy metal detoxification, cytoskeleton and cell wall structure, and plant development in Brassica. Interestingly, several key proteins including glutathione S-transferase F9 (A0A078GBY1), ATP sulfurylase 2 (A0A078GW82), cystine lyase CORI3 (A0A078FC13), ferredoxin-dependent glutamate synthase 1 (A0A078HXC0), glutaredoxin-C5 (A0A078ILU9), glutaredoxin-C2 (A0A078HHH4) actively involved in antioxidant defense and sulfur assimilation-mediated Cd detoxification process confirmed by their interactome analyses. These candidate proteins shared common gene networks associated with plant fitness, Cd-detoxification and tolerance in Brassica. The proteome insights may encourage breeders for enhancing multi-omics assisted Cd-tolerance in Brassica, and GSH-mediated hazard free oil seed crop production for global food security.


Subject(s)
Brassica napus , Cadmium , Glutathione , Plant Proteins , Proteomics , Cadmium/toxicity , Brassica napus/drug effects , Brassica napus/genetics , Brassica napus/metabolism , Glutathione/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Soil Pollutants/toxicity , Proteome/drug effects , Proteome/metabolism , Antioxidants/metabolism
3.
Genome Biol ; 25(1): 61, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38414075

ABSTRACT

BACKGROUND: Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS: Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS: This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.


Subject(s)
Fagopyrum , Domestication , Fagopyrum/genetics , Gene Expression Profiling , Genome-Wide Association Study , Genomics , Phylogeny
4.
Environ Sci Pollut Res Int ; 30(54): 115461-115479, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37882925

ABSTRACT

Cadmium (Cd) is a toxic substance that is uptake by plants from soils, Cd easily transfers into the food chain. Considering global food security, eco-friendly, cost-effective, and metal detoxification strategies are highly demandable for sustainable food crop production. The purpose of this study was to investigate how citric acid (CA) alleviates or tolerates Cd toxicity in Brassica using a proteome approach. In this study, the global proteome level was significantly altered under Cd toxicity with or without CA supplementation in Brassica. A total of 4947 proteins were identified using the gel-free proteome approach. Out of these, 476 proteins showed differential abundance between the treatment groups, wherein 316 were upregulated and 160 were downregulated. The gene ontology analysis reveals that differentially abundant proteins were involved in different biological processes including energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense, heavy metal detoxification, plant development, and cytoskeleton and cell wall structure in Brassica leaves. Interestingly, several candidate proteins such as superoxide dismutase (A0A078GZ68) L-ascorbate peroxidase 3 (A0A078HSG4), glutamine synthetase (A0A078HLB2), glutathione S-transferase DHAR1 (A0A078HPN8), glutamine synthetase (A0A078HLB2), cysteine synthase (A0A078GAD3), S-adenosylmethionine synthase 2 (A0A078JDL6), and thiosulfate/3-mercaptopyruvate sulfur transferase 2 (A0A078H905) were involved in antioxidant defense system and sulfur assimilation-involving Cd-detoxification process in Brassica. These findings provide new proteome insights into CA-mediated Cd-toxicity alleviation in Brassica, which might be useful to oilseed crop breeders for enhancing heavy metal tolerance in Brassica using the breeding program, with sustainable and smart Brassica production in a metal-toxic environment.


Subject(s)
Brassica napus , Brassica , Metals, Heavy , Cadmium/analysis , Antioxidants/metabolism , Brassica napus/metabolism , Proteome/metabolism , Citric Acid/metabolism , Glutamate-Ammonia Ligase/metabolism , Plant Breeding , Metals, Heavy/metabolism , Brassica/metabolism , Sulfur/metabolism
5.
Rice (N Y) ; 16(1): 23, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37145322

ABSTRACT

BACKGROUND: Rice is colonized by plant growth promoting bacteria such as Methylobacterium leading to mutually beneficial plant-microbe interactions. As modulators of the rice developmental process, Methylobacterium influences seed germination, growth, health, and development. However, little is known about the complex molecular responsive mechanisms modulating microbe-driven rice development. The application of proteomics to rice-microbe interactions helps us elucidate dynamic proteomic responses mediating this association. RESULTS: In this study, a total of 3908 proteins were detected across all treatments of which the non-inoculated IR29 and FL478 share up to 88% similar proteins. However, intrinsic differences appear in IR29 and FL478 as evident in the differentially abundant proteins (DAPs) and their associated gene ontology terms (GO). Successful colonization of M. oryzae CBMB20 in rice resulted to dynamic shifts in proteomes of both IR29 and FL478. The GO terms of DAPs for biological process in IR29 shifts in abundance from response to stimulus, cellular amino acid metabolic process, regulation of biological process and translation to cofactor metabolic process (6.31%), translation (5.41%) and photosynthesis (5.41%). FL478 showed a different shift from translation-related to response to stimulus (9%) and organic acid metabolic acid (8%). Both rice genotypes also showed a diversification of GO terms due to the inoculation of M. oryzae CBMB20. Specific proteins such as peptidyl-prolyl cis-trans isomerase (A2WJU9), thiamine thiazole synthase (A2YM28), and alanine-tRNA ligase (B8B4H5) upregulated in IR29 and FL478 indicate key mechanisms of M. oryzae CBMB20 mediated plant growth promotion in rice. CONCLUSIONS: Interaction of Methylobacterium oryzae CBMB20 to rice results in a dynamic, similar, and plant genotype-specific proteomic changes supporting associated growth and development. The multifaceted CBMB20 expands the gene ontology terms and increases the abundance of proteins associated with photosynthesis, diverse metabolic processes, protein synthesis and cell differentiation and fate potentially attributed to the growth and development of the host plant. The specific proteins and their functional relevance help us understand how CBMB20 mediate growth and development in their host under normal conditions and potentially link subsequent responses when the host plants are exposed to biotic and abiotic stresses.

6.
Pflugers Arch ; 475(2): 217-231, 2023 02.
Article in English | MEDLINE | ID: mdl-36274100

ABSTRACT

An aberrant late sodium current (INa,Late) caused by a mutation in the cardiac sodium channel (Nav1.5) has emerged as a contributor to electrical remodeling that causes susceptibility to atrial fibrillation (AF). Although downregulation of phosphoinositide 3-kinase (PI3K)/Akt signaling is associated with AF, the molecular mechanisms underlying the negative regulation of INa,Late in AF remain unclear, and potential therapeutic approaches are needed. In this work, we constructed a tachypacing-induced cellular model of AF by exposing HL-1 myocytes to rapid electrical stimulation (1.5 V/cm, 4 ms, 10 Hz) for 6 h. Then, we gathered data using confocal Ca2+ imaging, immunofluorescence, patch-clamp recordings, and immunoblots. The tachypacing cells displayed irregular Ca2+ release, delayed afterdepolarization, prolonged action potential duration, and reduced PI3K/Akt signaling compared with controls. Those detrimental effects were related to increased INa,Late and were significantly mediated by treatment with the INa,Late blocker ranolazine. Furthermore, decreased PI3K/Akt signaling via PI3K inhibition increased INa,Late and subsequent aberrant myocyte excitability, which were abolished by INa,Late inhibition, suggesting that PI3K/Akt signaling is responsible for regulating pathogenic INa,Late. These results indicate that PI3K/Akt signaling is critical for regulating INa,Late and electrical remodeling, supporting the use of PI3K/Akt-mediated INa,Late as a therapeutic target for AF.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Humans , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinase/pharmacology , Atrial Remodeling/physiology , Sodium , Myocytes, Cardiac/physiology , Action Potentials , Heart Atria
7.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638572

ABSTRACT

Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletion, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, a defect in SMN2 splicing, involving exon 7 skipping, results in a low level of functional SMN protein. Therefore, the upregulation of SMN protein expression from the SMN2 gene is generally considered to be one of the best therapeutic strategies to treat SMA. Most of the SMA drug discovery is based on synthetic compounds, and very few natural compounds have been explored thus far. Here, we performed an unbiased mechanism-independent and image-based screen of a library of microbial metabolites in SMA fibroblasts using an SMN-specific immunoassay. In doing so, we identified brefeldin A (BFA), a well-known inhibitor of ER-Golgi protein trafficking, as a strong inducer of SMN protein. The profound increase in SMN protein was attributed to, in part, the rescue of the SMN2 pre-mRNA splicing defect. Intriguingly, BFA increased the intracellular calcium concentration, and the BFA-induced exon 7 inclusion of SMN2 splicing, was abrogated by the depletion of intracellular calcium and by the pharmacological inhibition of calcium/calmodulin-dependent kinases (CaMKs). Moreover, BFA considerably reduced the expression of Tra2-ß and SRSF9 proteins in SMA fibroblasts and enhanced the binding of PSF and hnRNP M to an exonic splicing enhancer (ESE) of exon 7. Together, our results demonstrate a significant role for calcium and its signaling on the regulation of SMN splicing, probably through modulating the expression/activity of splicing factors.


Subject(s)
Calcium Signaling/genetics , Gene Expression/genetics , Motor Neurons/physiology , Cell Line , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/physiology , Exons/genetics , Fibroblasts/physiology , Golgi Apparatus/genetics , Golgi Apparatus/physiology , HEK293 Cells , Humans , Muscular Atrophy, Spinal/genetics , Protein Transport/genetics , Protein Transport/physiology , RNA Splicing/genetics , RNA, Messenger/genetics , SMN Complex Proteins/genetics
8.
Antioxidants (Basel) ; 10(5)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064823

ABSTRACT

Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts. The review may provide knowledge and insight into the modulation of cardiac pathogenesis by ROS and natural antioxidants.

9.
Int J Mol Sci ; 22(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070927

ABSTRACT

Citric acid (CA), as an organic chelator, plays a vital role in alleviating copper (Cu) stress-mediated oxidative damage, wherein a number of molecular mechanisms alter in plants. However, it remains largely unknown how CA regulates differentially abundant proteins (DAPs) in response to Cu stress in Brassica napus L. In the present study, we aimed to investigate the proteome changes in the leaves of B. L. seedlings in response to CA-mediated alleviation of Cu stress. Exposure of 21-day-old seedlings to Cu (25 and 50 µM) and CA (1.0 mM) for 7 days exhibited a dramatic inhibition of overall growth and considerable increase in the enzymatic activities (POD, SOD, CAT). Using a label-free proteome approach, a total of 6345 proteins were identified in differentially treated leaves, from which 426 proteins were differentially expressed among the treatment groups. Gene ontology (GO) and KEGG pathways analysis revealed that most of the differential abundance proteins were found to be involved in energy and carbohydrate metabolism, photosynthesis, protein metabolism, stress and defense, metal detoxification, and cell wall reorganization. Our results suggest that the downregulation of chlorophyll biosynthetic proteins involved in photosynthesis were consistent with reduced chlorophyll content. The increased abundance of proteins involved in stress and defense indicates that these DAPs might provide significant insights into the adaptation of Brassica seedlings to Cu stress. The abundances of key proteins were further verified by monitoring the mRNA expression level of the respective transcripts. Taken together, these findings provide a potential molecular mechanism towards Cu stress tolerance and open a new route in accelerating the phytoextraction of Cu through exogenous application of CA in B. napus.


Subject(s)
Brassica napus/drug effects , Citric Acid/pharmacology , Copper/toxicity , Environmental Pollutants/toxicity , Plant Proteins/genetics , Proteome/genetics , Adaptation, Physiological , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/metabolism , Catalase/genetics , Catalase/metabolism , Chlorophyll/biosynthesis , Citric Acid/metabolism , Copper/metabolism , Environmental Pollutants/antagonists & inhibitors , Environmental Pollutants/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Peroxidases/classification , Peroxidases/genetics , Peroxidases/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/classification , Plant Proteins/metabolism , Proteome/classification , Proteome/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Stress, Physiological , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
10.
Genome Biol ; 22(1): 23, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33430931

ABSTRACT

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is a nutritionally balanced and flavonoid-rich crop plant that has been in cultivation for 4000 years and is now grown globally. Despite its nutraceutical and agricultural value, the characterization of its genetics and its domestication history is limited. RESULTS: Here, we report a comprehensive database of Tartary buckwheat genomic variation based on whole-genome resequencing of 510 germplasms. Our analysis suggests that two independent domestication events occurred in southwestern and northern China, resulting in diverse characteristics of modern Tartary buckwheat varieties. Genome-wide association studies for important agricultural traits identify several candidate genes, including FtUFGT3 and FtAP2YT1 that significantly correlate with flavonoid accumulation and grain weight, respectively. CONCLUSIONS: We describe the domestication history of Tartary buckwheat and provide a detailed resource of genomic variation to allow for genomic-assisted breeding in the improvement of elite cultivars.


Subject(s)
Domestication , Fagopyrum/genetics , Fagopyrum/metabolism , Genome-Wide Association Study , China , Flavonoids/metabolism , Gene Expression Regulation, Plant , Genetic Techniques , Genetic Variation , Plant Breeding , Polymorphism, Single Nucleotide
11.
Plants (Basel) ; 11(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35009093

ABSTRACT

Tartary buckwheat (Fagopyrum tataricum) is an important crop that belongs to the Polygonaceae family, whose roots have received considerable attention due to the presence of compounds with high nutritional and medicinal value. In this study, we aimed to develop an efficient protocol for the culture of adventitious (ARs) and hairy (HRs) roots on a half-strength Schenk and Hildebrandt (SH) medium containing different concentrations of the auxins, α-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), and indole-3-acetic acid (IAA). The highest percentage of root induction (91.67%) was achieved with 0.5 mg/L IAA, whereas the greatest number of roots was found in 1 mg/L IAA. In contrast, 0.1 mg/L IBA returned the longest roots. As expected, HRs were obtained from in vitro leaf explants infected with Agrobacterium rhizogenes R1000. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 11 phenolic pathway genes revealed that five genes (FtPAL, FtC3H, FtHQT, FtCHS, and FtANS) were highly expressed in HRs, whereas only four (FtC4H, FtFLS2, FtDFR, and FtANR), and three (Ft4CL, FtCHI, and FtF3H) were recognized in the ARs and seedling roots (SRs), respectively. HPLC analysis of phenolic compounds in different root cultures showed that the majority of the phenolic compounds (both individual and total) were significantly accumulated in the HRs. Principal component analysis (PCA) identified differences among the three root types, whereby HRs were separated from ARs and SRs based on the amount of phenolic compounds present. Analysis of the metabolic pathway revealed that among the identified metabolites, the 3, 2, and 1 pathways were associated with flavonoid, flavone and flavonol, and phenylpropanoid biosynthesis, respectively. Hierarchical clustering analysis and the heat map showed that the different root cultures presented unique metabolites.

12.
Biochem Biophys Res Commun ; 527(2): 379-386, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32321644

ABSTRACT

Although cultured adult cardiac myocytes in combination with cell-level genetic modifications have been adopted for the study of protein function, the cellular alterations caused by the culture conditions themselves need to be clarified before we can interpret the effects of genetically altered proteins. We systematically compared the cellular morphology, global Ca2+ signaling, elementary Ca2+ release (sparks), and arrangement of ryanodine receptor (RyR) clusters in short-term (2 days)-cultured adult rat ventricular myocytes with those of freshly isolated myocytes. The transverse (t)-tubules were remarkably decreased (to ∼25%) by culture, and whole-cell capacitance was reduced by ∼35%. The magnitude of depolarization-induced Ca2+ transients decreased to ∼50%, and Ca2+ transient decay was slowed by culture. The culture did not affect sarcoplasmic reticulum (SR) Ca2+ loading. Therefore, fractional Ca2+ release was attenuated by culture. In the cultured cells, the L-type Ca2+ current (ICa) was smaller (∼50% of controls) and its inactivation was slower. In cultured myocytes, there were significantly fewer (∼50% of control) Ca2+ sparks, the local Ca2+ releases through RyR clusters, compared with in freshly isolated cells. Amplitude and kinetics (duration and time-to-peak) of individual sparks were similar, but they showed greater width in cultured cells. Immunolocalization analysis revealed that the cross-striation of RyRs distribution became weaker and less organized, and that the density of RyR clusters decreased in cultured myocytes. Our data suggest that the loss of t-tubules and generation of compromised Ca2+ transients and ICa in short-term adult ventricular cell culture are independent of SR Ca2+ loading status. In addition, the deteriorated arrangement of the RyR-clusters and their decreased density after short-term culture may be partly responsible for fewer Ca2+ sparks and a decrease in global Ca2+ release.


Subject(s)
Calcium Signaling , Heart Ventricles/cytology , Myocytes, Cardiac/metabolism , Animals , Calcium/metabolism , Cations, Divalent/metabolism , Cells, Cultured , Heart Ventricles/metabolism , Male , Myocytes, Cardiac/cytology , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel/metabolism
13.
J Mol Cell Cardiol ; 143: 38-50, 2020 06.
Article in English | MEDLINE | ID: mdl-32305361

ABSTRACT

Atrial myocytes are continuously exposed to shear stress during cardiac cycles. Previous reports have shown that shear stress induces two different types of global Ca2+ signaling in atrial myocytes-longitudinal Ca2+ waves (L-waves) and action potential-involved transverse waves (T-waves), and suggested an underlying role of the autocrine activation of P2 receptors. We explored the correlations between ATP release and Ca2+ wave generation in atrial myocytes and investigated why the cells develop two Ca2+-wave types during the same shear force. We examined whether ATP release correlates with different shear-stress (~16 dyn/cm2)-mediated Ca2+ signaling by simultaneous measurement of local Ca2+ and ATP release in individual atrial myocytes using two-dimensional confocal imaging and sniffer patch techniques, respectively. Functional P2X7-receptor-expressing HEK293 cells were established as sniffer cells, which generated currents in real time in response to ATP released from a closely positioned atrial myocyte. Both shear-stress-induced L- and T-waves were preceded by sniffer currents with no difference in the current magnitude. Left atrial (LA) myocytes had two- to three-fold larger sniffer currents than right atrial (RA) cells, as was confirmed by ATP chemiluminescence assay. Shear-stress-induced ATP release was eliminated by connexin (Cx) 43 hemichannel inhibition using La3+, Gap19, or knock-down of Cx43 expression. The level of phosphorylated Cx43 at Ser386 (p-Cx43Ser368), but not total Cx43, was higher in LA versus RA myocytes. Most LA cells (~70%) developed L-waves, whereas most RA myocytes (~80%) presented T-waves. Shear-stress-induced T-waves were completely removed by inhibition of P2X4R, which were most abundant in rat atrial cells. Expression of P2X4R was higher in RA than LA myocytes, whereas expression of P2Y1R, the mediator of L-waves, was higher in LA than RA myocytes. ATP release mainly triggers L-waves in LA myocytes and T-waves in RA myocytes under the same shear force, partly because of the differential expression of P2Y1R and P2X4R between LA and RA myocytes. Higher ATP release in LA myocytes under shear stress may not contribute to determination of the wave pattern.


Subject(s)
Calcium Signaling , Calcium/metabolism , Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Receptors, Purinergic P2/metabolism , Adenosine Triphosphate , Animals , Connexin 43/metabolism , Connexins/metabolism , Gene Expression , HEK293 Cells , Heart Atria/cytology , Humans , Male , Myocytes, Cardiac/cytology , Phosphorylation , Rats , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X4/metabolism , Stress, Mechanical
14.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383710

ABSTRACT

ATP is a major energy source in the mammalian cells, but it is an extracellular chemical messenger acting on P2 purinergic receptors. A line of evidence has shown that ATP is released from many different types of cells including neurons, endothelial cells, and muscle cells. In this review, we described the distribution of P2 receptor subtypes in the cardiac cells and their physiological and pathological roles in the heart. So far, the effects of external application of ATP or its analogues, and those of UTP on cardiac contractility and rhythm have been reported. In addition, specific genetic alterations and pharmacological agonists and antagonists have been adopted to discover specific roles of P2 receptor subtypes including P2X4-, P2X7-, P2Y2- and P2Y6-receptors in cardiac cells under physiological and pathological conditions. Accumulated data suggest that P2X4 receptors may play a beneficial role in cardiac muscle function, and that P2Y2- and P2Y6-receptors can induce cardiac fibrosis. Recent evidence further demonstrates P2Y1 receptor and P2X4 receptor as important mechanical signaling molecules to alter membrane potential and Ca2+ signaling in atrial myocytes and their uneven expression profile between right and left atrium.


Subject(s)
Mechanotransduction, Cellular , Myocytes, Cardiac/metabolism , Receptors, Purinergic P2/metabolism , Signal Transduction , Adenosine Triphosphate/metabolism , Animals , Biomarkers , Disease Susceptibility , Extracellular Space/metabolism , Gene Expression Regulation , Heart Rate/drug effects , Heart Rate/genetics , Humans , Mechanotransduction, Cellular/drug effects , Myocardial Contraction , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Purinergic P2 Receptor Agonists/pharmacology , Purinergic P2 Receptor Antagonists/pharmacology , Receptors, Purinergic P2/genetics , Signal Transduction/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics
15.
Oxid Med Cell Longev ; 2019: 3585390, 2019.
Article in English | MEDLINE | ID: mdl-31827673

ABSTRACT

Myoblast fusion is an essential step in skeletal muscle development and regeneration. NADPH oxidase 4 (Nox4) regulates cellular processes such as proliferation, differentiation, and survival by producing reactive oxygen species (ROS). Insulin-like growth factor 1 induces muscle hypertrophy via Nox4, but its function in myoblast fusion remains elusive. Here, we report a ROS-dependent role of Nox4 in myoblast differentiation. Regenerating muscle fibers after injury by cardiotoxin had a lower cross-sectional area in Nox4-knockout (KO) mice than myofibers in wild-type (WT) mice. Diameters and fusion index values of myotubes differentiated from Nox4-KO primary myoblasts were significantly lower than those of myotubes derived from WT myoblasts. However, no difference was observed in the differentiation index and expression of MyoD, myogenin, and myosin heavy chain 3 (MHC) between KO and WT myotubes. The decreased fusion index was also observed during differentiation of primary myoblasts and C2C12 cells with suppressed Nox4 expression. In contrast, in C2C12 cells overexpressing Nox4, the fusion index was increased, whereas the differentiation index and MHC and myogenin protein expression were not affected compared to control. Interestingly, the expression of myomaker (Tmem8c), a fusogenic protein that controls myoblast fusion, was reduced in Nox4-knockdown C2C12 cells. The myomaker expression level was proportional to the cellular ROS level, which was regulated by of Nox4 expression level. These results suggests that Nox4 contributes to myoblast fusion, possibly through the regulation of myomaker expression via ROS production, and that Nox4-dependent ROS may promote skeletal muscle regeneration and growth.


Subject(s)
Muscle, Skeletal/physiology , NADPH Oxidase 4/metabolism , Animals , Cardiotoxins/toxicity , Cell Differentiation/drug effects , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Knockout , MyoD Protein/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Myogenin/metabolism , Myosin Heavy Chains/metabolism , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/genetics , Pyrazoles/pharmacology , Pyrazolones , Pyridines/pharmacology , Pyridones , RNA Interference , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Regeneration/drug effects
16.
Bioorg Med Chem ; 27(18): 4110-4123, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31378598

ABSTRACT

The sulfonamidophenylethylamide analogues were explored for finding novel and potent cardiac myosin activators. Among them, N-(4-(N,N-dimethylsulfamoyl)phenethyl-N-methyl-5-phenylpentanamide (13, CMA at 10 µM = 48.5%; FS = 26.21%; EF = 15.28%) and its isomer, 4-(4-(N,N-dimethylsulfamoyl)phenyl-N-methyl-N-(3-phenylpropyl)butanamide (27, CMA at 10 µM = 55.0%; FS = 24.69%; EF = 14.08%) proved to be efficient cardiac myosin activators both in in vitro and in vivo studies. Compounds 13 (88.2 + 3.1% at 5 µM) and 27 (46.5 + 2.8% at 5 µM) showed positive inotropic effect in isolated rat ventricular myocytes. The potent compounds 13 and 27 were highly selective for cardiac myosin over skeletal and smooth muscle myosin, and therefore these potent and selective amide derivatives could be considered a new class of cardiac myosin activators for the treatment of systolic heart failure.


Subject(s)
Amides/therapeutic use , Cardiac Myosins/drug effects , Amides/pharmacology , Humans , Structure-Activity Relationship
17.
Circulation ; 140(12): 1015-1030, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31315456

ABSTRACT

BACKGROUND: Plakophilin-2 (PKP2) is classically defined as a desmosomal protein. Mutations in PKP2 associate with most cases of gene-positive arrhythmogenic right ventricular cardiomyopathy. A better understanding of PKP2 cardiac biology can help elucidate the mechanisms underlying arrhythmic and cardiomyopathic events consequent to PKP2 deficiency. Here, we sought to capture early molecular/cellular events that can act as nascent arrhythmic/cardiomyopathic substrates. METHODS: We used multiple imaging, biochemical and high-resolution mass spectrometry methods to study functional/structural properties of cells/tissues derived from cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mice (PKP2cKO) 14 days post-tamoxifen injection, a time point preceding overt electrical or structural phenotypes. Myocytes from right or left ventricular free wall were studied separately. RESULTS: Most properties of PKP2cKO left ventricular myocytes were not different from control; in contrast, PKP2cKO right ventricular (RV) myocytes showed increased amplitude and duration of Ca2+ transients, increased Ca2+ in the cytoplasm and sarcoplasmic reticulum, increased frequency of spontaneous Ca2+ release events (sparks) even at comparable sarcoplasmic reticulum load, and dynamic Ca2+ accumulation in mitochondria. We also observed early- and delayed-after transients in RV myocytes and heightened susceptibility to arrhythmias in Langendorff-perfused hearts. In addition, ryanodine receptor 2 in PKP2cKO-RV cells presented enhanced Ca2+ sensitivity and preferential phosphorylation in a domain known to modulate Ca2+ gating. RNAseq at 14 days post-tamoxifen showed no relevant difference in transcript abundance between RV and left ventricle, neither in control nor in PKP2cKO cells. Instead, we found an RV-predominant increase in membrane permeability that can permit Ca2+ entry into the cell. Connexin 43 ablation mitigated the membrane permeability increase, accumulation of cytoplasmic Ca2+, increased frequency of sparks and early stages of RV dysfunction. Connexin 43 hemichannel block with GAP19 normalized [Ca2+]i homeostasis. Similarly, protein kinase C inhibition normalized spark frequency at comparable sarcoplasmic reticulum load levels. CONCLUSIONS: Loss of PKP2 creates an RV-predominant arrhythmogenic substrate (Ca2+ dysregulation) that precedes the cardiomyopathy; this is, at least in part, mediated by a Connexin 43-dependent membrane conduit and repressed by protein kinase C inhibitors. Given that asymmetric Ca2+ dysregulation precedes the cardiomyopathic stage, we speculate that abnormal Ca2+ handling in RV myocytes can be a trigger for gross structural changes observed at a later stage.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/metabolism , Connexin 43/metabolism , Desmosomes/metabolism , Myocytes, Cardiac/physiology , Plakophilins/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Cells, Cultured , Disease Models, Animal , Homeostasis , Humans , Mice , Mice, Knockout , Mutation/genetics , Plakophilins/genetics
18.
ACS Nano ; 13(2): 1127-1135, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30592611

ABSTRACT

It is widely accepted in condensed matter physics and material science communities that a single-oriented overlayer cannot be grown on an amorphous substrate because the disordered substrate randomizes the orientation of the seeds, leading to polycrystalline grains. In the case of two-dimensional materials such as graphene, the large-scale growth of single-oriented materials on an amorphous substrate has remained unsolved. Here, we demonstrate experimentally that the presence of uniformly oriented graphene seeds facilitates the growth of millimeter-scale single-oriented graphene with 3 × 4 mm2 on palladium silicide, which is an amorphous thin film, where the uniformly oriented graphene seeds were epitaxially grown. The amorphous palladium silicide film promotes the growth of the single-oriented growth of graphene by causing carbon atoms to be diffusive and mobile within and on the substrate. In contrast to these results, without the uniformly oriented seeds, the amorphous substrate leads to the growth of polycrystalline graphene grains. This millimeter-scale single-oriented growth from uniformly oriented seeds can be applied to other amorphous substrates.

19.
Cell Physiol Biochem ; 50(6): 2296-2313, 2018.
Article in English | MEDLINE | ID: mdl-30423577

ABSTRACT

BACKGROUND/AIMS: The atrium is exposed to high shear stress during heart failure and valvular diseases. We aimed to understand atrial shear-induced Ca2+ signaling and its underlying mechanisms. METHODS: Pressurized micro-flow was applied to single rat atrial myocytes, and Ca2+ signal, membrane potential, and ATP release were assessed using confocal imaging, patch clamp technique, and luciferin-luciferase assay, respectively. RESULTS: Shear stress (∼16 dyn/cm2) induced global Ca2+ waves (∼0.1 events/s) from the periphery to the center of cells in a transverse direction ("T-wave"; ∼145 µm/s). Pharmacological interventions and simultaneous recording of membrane potential and Ca2+ demonstrated that shear-induced T-waves resulted from action potential (AP)-triggered Ca2+ release from the sarcoplasmic reticulum. T-waves were not sensitive to inhibitors of known shear signaling mechanisms except connexin hemichannels and ATP release. Shear stress caused ATP release from these myocytes (∼1.1x10-17 moles/unit membrane, µm2); ATP release was increased by enhancement of connexin hemichannels and suppressed by inhibition of the hemichannels, but not affected by inhibitors of other ATP release pathways. Blockade of P2X receptor, but not pannexin or the Na+-Ca2+ exchanger, eliminated shear-induced T-wave initiation. CONCLUSION: Our data suggest that shear stress triggers APs and concomitant Ca2+ signaling via activation of P2X receptors by connexin hemichannel-mediated ATP release in atrial myocytes.


Subject(s)
Calcium Signaling , Receptors, Purinergic P2X/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Cells, Cultured , Connexins/metabolism , Male , Membrane Potentials/drug effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , NADPH Oxidases/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2X/chemistry , Sarcoplasmic Reticulum/metabolism , Shear Strength , Sodium-Calcium Exchanger/antagonists & inhibitors , Sodium-Calcium Exchanger/metabolism , Tetrodotoxin/pharmacology
20.
Arch Biochem Biophys ; 659: 33-41, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30278156

ABSTRACT

Myocardium is subjected to a variety of forces with each contraction, such as stretch, afterload, and shear stress, and adapts to those mechanical stimuli. These mechanical stimuli increase in heart failure, valvular heart disease and hypertension that are clinically associated with arrhythmia and myocyte remodeling. To understand cellular and molecular basis of mechanical stress-mediated cardiac dysfunction and remodeling, several experimental approaches have been successfully used in single cardiac myocytes. In this review, we will briefly summarize the current knowledge about the responses of cardiac myocytes to mechanical stimuli and underlying mechanisms in the context of Ca2+ signaling, with focusing on the role of mitochondria in these mechanotransductions. Recent evidence suggests that mechanotransduction, associated with mitochondrial metabolism, significantly alters Ca2+ signaling and ionic homeostasis in cardiac myocytes under shear stress or prolonged stretch, and that it may play a key role in the pathogenesis of heart failure.


Subject(s)
Calcium/metabolism , Mechanotransduction, Cellular , Mitochondria, Heart/metabolism , Animals , Cytosol/metabolism , Humans , Signal Transduction , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...