Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Clin Nutr ; 106(6): 1439-1448, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29021285

ABSTRACT

Background: Little is known about placental vitamin D metabolism and its impact on maternal circulating vitamin D concentrations in humans.Objective: This study sought to advance the current understanding of placental vitamin D metabolism and its role in modulating maternal circulating vitamin D metabolites during pregnancy.Design: Nested within a feeding study, 24 healthy pregnant women (26-29 wk of gestation) consumed a single amount of vitamin D (511 IU/d from diet and a cholecalciferol supplement) for 10 wk. Concentrations of placental and blood vitamin D metabolites and placental messenger RNA (mRNA) abundance of vitamin D metabolic pathway components were quantified. In addition, cultured human trophoblasts were incubated with 13C-cholecalciferol to examine the intracellular generation and secretion of vitamin D metabolites along with the regulation of target genes.Results: In placental tissue, 25-hydroxyvitamin D3 [25(OH)D3] was strongly correlated (r = 0.83, P < 0.001) with 24,25-dihydroxyvitamin D3 Moreover, these placental metabolites were strongly correlated (r ≤ 0.85, P ≤ 0.04) with their respective metabolites in maternal circulation. Positive associations (P ≤ 0.045) were also observed between placental mRNA abundance of vitamin D metabolic components and circulating vitamin D metabolites [i.e., LDL-related protein 2 (LRP2, also known as megalin) with 25(OH)D3 and the C3 epimer of 25(OH)D3 [3-epi-25(OH)D3]; cubilin (CUBN) with 25(OH)D3; 25-hydroxylase (CYP2R1) with 3-epi-25(OH)D3; 24-hydroxylase (CYP24A1) with 25(OH)D3, 3-epi-25(OH)D3, and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]; and 1α-hydroxylase [(CYP27B1) with 3-epi-25(OH)D3 and 1,25(OH)2D3]. Notably, in vitro experiments with trophoblasts showed increased production and secretion of 25(OH)D3 and higher CYP24A1 gene transcript abundance in response to cholecalciferol treatment.Conclusions: The numerous associations of many of the placental biomarkers of vitamin D metabolism with circulating vitamin D metabolites among pregnant women [including a CYP27B1-associated increase in 1,25(OH)2D3] and the evidence of trophoblast production and secretion of vitamin D metabolites, especially 25(OH)D3, suggest that the placenta may play an active role in modulating the vitamin D metabolite profile in maternal circulation in human pregnancy. This trial was registered at clinicaltrials.gov as NCT03051867.


Subject(s)
Placenta/metabolism , Vitamin D/metabolism , Vitamins/metabolism , 24,25-Dihydroxyvitamin D 3/blood , 24,25-Dihydroxyvitamin D 3/metabolism , Adult , Biomarkers/metabolism , Calcifediol/blood , Calcifediol/metabolism , Cholecalciferol/blood , Cholecalciferol/metabolism , Cholecalciferol/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Diet , Dietary Supplements , Female , Humans , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Pregnancy , RNA, Messenger/metabolism , Receptors, Cell Surface/metabolism , Trophoblasts/drug effects , Trophoblasts/metabolism , Vitamin D/analogs & derivatives , Vitamin D/blood , Vitamins/blood
2.
Am J Trop Med Hyg ; 96(6): 1274-1284, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28719264

ABSTRACT

AbstractThe human microbiome is an intriguing potentially modifiable risk factor in our arsenal against Mycobacterium tuberculosis, the leading infectious disease killer globally. Previous studies have shown associations between the human microbiome and pulmonary disease states; however, etiological links between the microbiome and tuberculosis (TB) infection or disease remain unclear. Immunomodulatory roles of the microbiome may prove to be a critical asset in the host response against TB, including in preventing TB infection, reducing progression from latency, mitigating disease severity, and lowering the incidence of drug resistance and coinfections. This review examined the associations between TB and the gut and lung microbiome. Eight studies were identified through a PubMed database search, including one animal study (N = 1), case report (N = 1), and case-control studies (N = 6). TB infection and disease were associated with reduced gastrointestinal microbial diversity in a murine model and human case report. Sputum microbial diversity differed by TB status in case-control studies, although some reported heterogeneous findings. Current evidence suggests that the gut and lung microbiome are associated with TB infection and disease. However, as studies are limited, etiological and longitudinal research is needed to determine clinical relevance.


Subject(s)
Gastrointestinal Microbiome , Tuberculosis, Pulmonary/therapy , Tuberculosis/therapy , Animals , Disease Models, Animal , Gastrointestinal Tract/microbiology , Humans , Immunomodulation , Lung/microbiology , Mycobacterium tuberculosis , Tuberculosis/microbiology , Tuberculosis, Pulmonary/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL