Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
J Mammary Gland Biol Neoplasia ; 29(1): 10, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722417

ABSTRACT

Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.


Subject(s)
Epithelial Cells , Mammary Glands, Animal , STAT3 Transcription Factor , Animals , Female , Cattle , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Mice , Epithelial Cells/metabolism , STAT3 Transcription Factor/metabolism , Phosphorylation , Pregnancy , Parturition/physiology , Parturition/metabolism , Signal Transduction
2.
Metabolites ; 14(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38668368

ABSTRACT

The oral cavity contains a vast array of microbes that contribute to the balance between oral health and disease. In addition, oral bacteria can gain access to the circulation and contribute to other diseases and chronic conditions. There are a limited number of publications available regarding the comparative lipidomics of oral bacteria and fungi involved in the construction of oral biofilms, hence our decision to study the lipidomics of representative oral bacteria and a fungus. We performed high-resolution mass spectrometric analyses (<2.0 ppm mass error) of the lipidomes from five Gram-positive commensal bacteria: Streptococcus oralis, Streptococcus intermedius, Streptococcus mitis, Streptococcus sanguinis, and Streptococcus gordonii; five Gram-positive opportunistic bacteria: Streptococcus mutans, Staphylococcus epidermis, Streptococcus acidominimus, Actinomyces viscosus, and Nanosynbacter lyticus; seven Gram-negative opportunistic bacteria: Porphyromonas gingivalis. Prevotella brevis, Proteus vulgaris, Fusobacterium nucleatum, Veillonella parvula, Treponema denticola, and Alkermansia muciniphila; and one fungus: Candida albicans. Our mass spectrometric analytical platform allowed for a detailed evaluation of the many structural modifications made by microbes for the three major lipid scaffolds: glycerol, sphingosine and fatty acyls of hydroxy fatty acids (FAHFAs).

3.
Glob Chang Biol ; 30(1): e17084, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273567

ABSTRACT

Excessive fine sediment (particles <2 mm) deposition in freshwater systems is a pervasive stressor worldwide. However, understanding of ecological response to excess fine sediment in river systems at the global scale is limited. Here, we aim to address whether there is a consistent response to increasing levels of deposited fine sediment by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New Zealand and the UK). Results indicate ecological responses are not globally consistent and are instead dependent on both the region and the facet of invertebrate diversity considered, that is, taxonomic or functional trait structure. Invertebrate communities of Australia were most sensitive to deposited fine sediment, with the greatest rate of change in communities occurring when fine sediment cover was low (below 25% of the reach). Communities in the UK displayed a greater tolerance with most compositional change occurring between 30% and 60% cover. In both New Zealand and Brazil, which included the most heavily sedimented sampled streams, the communities were more tolerant or demonstrated ambiguous responses, likely due to historic environmental filtering of invertebrate communities. We conclude that ecological responses to fine sediment are not generalisable globally and are dependent on landscape filters with regional context and historic land management playing important roles.


Subject(s)
Geologic Sediments , Invertebrates , Animals , Invertebrates/physiology , Fresh Water , Rivers , New Zealand , Ecosystem , Biodiversity , Environmental Monitoring
4.
Immunol Cell Biol ; 102(2): 79-84, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135277

ABSTRACT

This Commentary article reviews the history of veterinary immunology in Australia from the 1980s and discusses the key people and areas of research during this period.


Subject(s)
Allergy and Immunology , Veterinary Medicine , Australia , Veterinary Medicine/history , Allergy and Immunology/history , History, 20th Century
5.
Life (Basel) ; 13(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38137936

ABSTRACT

Maintenance of the health of our oceans is critical for the survival of the oceanic food chain upon which humanity is dependent. Zooplanktonic copepods are among the most numerous multicellular organisms on earth. As the base of the primary consumer food web, they constitute a major biomass in oceans, being an important food source for fish and functioning in the carbon cycle. The potential impact of climate change on copepod populations is an area of intense study. Omics technologies offer the potential to detect early metabolic alterations induced by the stresses of climate change. One such omics approach is lipidomics, which can accurately quantify changes in lipid pools serving structural, signal transduction, and energy roles. We utilized high-resolution mass spectrometry (≤2 ppm mass error) to characterize the lipidome of three different species of copepods in an effort to identify lipid-based biomarkers of copepod health and viability which are more sensitive than observational tools. With the establishment of such a lipid database, we will have an analytical platform useful for prospectively monitoring the lipidome of copepods in a planned long-term five-year ecological study of climate change on this oceanic sentinel species. The copepods examined in this pilot study included a North Atlantic species (Calanus finmarchicus) and two species from the Gulf of Mexico, one a filter feeder (Acartia tonsa) and one a hunter (Labidocerca aestiva). Our findings clearly indicate that the lipidomes of copepod species can vary greatly, supporting the need to obtain a broad snapshot of each unique lipidome in a long-term multigeneration prospective study of climate change. This is critical, since there may well be species-specific responses to the stressors of climate change and co-stressors such as pollution. While lipid nomenclature and biochemistry are extremely complex, it is not essential for all readers interested in climate change to understand all of the various lipid classes presented in this study. The clear message from this research is that we can monitor key copepod lipid families with high accuracy, and therefore potentially monitor lipid families that respond to environmental perturbations evoked by climate change.

6.
Ecol Evol ; 13(10): e10564, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37780081

ABSTRACT

Despite lotic systems demonstrating high levels of seasonal and spatial variability, most research and biomonitoring practices do not consider seasonality when interpreting results and are typically focused at the meso-scale (combined pool/riffle samples) rather than considering habitat patch dynamics. We therefore sought to determine if the sampling season (spring, summer and autumn) influenced observed macroinvertebrate biodiversity, structure and function at the habitat unit scale (determined by substrate composition), and if this in turn influenced the assessment of fine sediment (sand and silt) pressures. We found that biodiversity supported at the habitat level was not seasonally consistent with the contribution of nestedness and turnover in structuring communities varying seasonally. Habitat differences in community composition were evident for taxonomic communities regardless of the season but were not seasonally consistent for functional communities, and, notably, season explained a greater amount of variance in functional community composition than the habitat unit. Macroinvertebrate biodiversity supported by silt habitats demonstrated strong seasonal differences and communities were functionally comparable to sand habitats in spring and to gravel habitats in autumn. Sand communities were impoverished compared to other habitats regardless of the season. Silt habitats demonstrated a strong increase in Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa and functional richness from spring into autumn, while vegetation habitats displayed a peak in EPT abundance in summer. Only silt and sand habitats demonstrated temporal variability in functional evenness suggesting that these habitats are different in terms of their resource partitioning and productivity over time compared to other habitats. Gravel and vegetation habitats appeared to be more stable over time with functional richness and evenness remaining consistent. To accurately evaluate the influence of fine sediment on lotic ecosystems, it is imperative that routine biomonitoring and scientific research discriminate between sand and silt fractions, given they support different biodiversity, particularly during summer and autumn months.

7.
Heliyon ; 9(9): e19368, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809884

ABSTRACT

During the COVID-19 pandemic, there was a shortage of personal protective equipment, PPE, which resulted in non-certified PPE being used by healthcare staffs. These would not provide the appropriate protection against the SARS-CoV-2 virus. Together with the local NHS Trust (University Hospitals of Derby and Burton (UHDB) NHS Foundation Trust) and a local small and medium enterprise (SME), Riverside Medical Packaging Ltd, the University of Derby (UoD) developed test protocols for PPE with a one-size-fits-all concept. Building on best practice in reviewing the literature and current design requirements, key design parameters were identified such as a minimum strap width and comfort level for healthcare related Face Shield. Two strap headbands made from fabric and elastomer with linear stiffness of 44.1 ± 0.3 N/m and 149.1 ± 3.1 N/m respectively were tested with respect to fit and comfort on small and large arc-shaped models. There was an exponential change in pressure from the side to the middle of the strap headbands. The high stiffness of the elastomer in a radial set-up influenced the pressure exerted on a wearer's head when the elastomer strap was used. Meanwhile the coefficient of friction between the fabric strap and arc-shaped model influenced the pressure exerted when a fabric strap was used. The ergonomics of the designed Face Shields supported the one-size-fits-all concept, whereby various gender and head circumferences were considered. The findings in this paper will promote new standards in the design of PPE with a one-size-fits-all target.

8.
Aging (Albany NY) ; 15(13): 5959-5960, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37393106
9.
Metabolites ; 13(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37512516

ABSTRACT

Lipidomics analyses of bacteria offer the potential to detect and monitor infections in a host since many bacterial lipids are not present in mammals. To evaluate this omics approach, we first built a database of bacterial lipids for representative Gram-positive and Gram-negative bacteria. Our lipidomics analysis of the reference bacteria involved high-resolution mass spectrometry and electrospray ionization with less than a 1.0 ppm mass error. The lipidomics profiles of bacterial cultures clearly distinguished between Gram-positive and Gram-negative bacteria. In the case of bovine paratuberculosis (PTB) serum, we monitored two unique bacterial lipids that we also monitored in Mycobacterium avian subspecies PTB. These were PDIM-B C82, a phthiodiolone dimycocerosate, and the trehalose monomycolate hTMM 28:1, constituents of the bacterial cell envelope in mycolic-containing bacteria. The next step will be to determine if lipidomics can detect subclinical PTB infections which can last 2-to-4 years in bovine PTB. Our data further suggest that it will be worthwhile to continue building our bacterial lipidomics database and investigate the further utility of this approach in other infections of veterinary and human clinical interest.

10.
J Mol Diagn ; 25(10): 709-728, 2023 10.
Article in English | MEDLINE | ID: mdl-37517472

ABSTRACT

DNA methylation array profiling for classifying pediatric central nervous system (CNS) tumors is a valuable adjunct to histopathology. However, unbiased prospective and interlaboratory validation studies have been lacking. The AIM BRAIN diagnostic trial involving 11 pediatric cancer centers in Australia and New Zealand was designed to test the feasibility of routine clinical testing and ran in parallel with the Molecular Neuropathology 2.0 (MNP2.0) study at Deutsches Krebsforschungszentrum (German Cancer Research Center). CNS tumors from 269 pediatric patients were prospectively tested on Illumina EPIC arrays, including 104 cases co-enrolled on MNP2.0. Using MNP classifier versions 11b4 and 12.5, we report classifications with a probability score ≥0.90 in 176 of 265 (66.4%) and 213 of 269 (79.2%) cases, respectively. Significant diagnostic information was obtained in 130 of 176 (74%) for 11b4, and 12 of 174 (7%) classifications were discordant with histopathology. Cases prospectively co-enrolled on MNP2.0 gave concordant classifications (99%) and score thresholds (93%), demonstrating excellent test reproducibility and sensitivity. Overall, DNA methylation profiling is a robust single workflow technique with an acceptable diagnostic yield that is considerably enhanced by the extensive subgroup and copy number profile information generated by the platform. The platform has excellent test reproducibility and sensitivity and contributes significantly to CNS tumor diagnosis.


Subject(s)
Central Nervous System Neoplasms , DNA Methylation , Child , Humans , Australia , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/genetics , DNA Methylation/genetics , New Zealand , Prospective Studies , Reproducibility of Results
11.
Front Oncol ; 13: 1154246, 2023.
Article in English | MEDLINE | ID: mdl-37124503

ABSTRACT

The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.

13.
Genome Med ; 15(1): 20, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013636

ABSTRACT

BACKGROUND: Molecular profiling of the tumour immune microenvironment (TIME) has enabled the rational choice of immunotherapies in some adult cancers. In contrast, the TIME of paediatric cancers is relatively unexplored. We speculated that a more refined appreciation of the TIME in childhood cancers, rather than a reliance on commonly used biomarkers such as tumour mutation burden (TMB), neoantigen load and PD-L1 expression, is an essential prerequisite for improved immunotherapies in childhood solid cancers. METHODS: We combined immunohistochemistry (IHC) with RNA sequencing and whole-genome sequencing across a diverse spectrum of high-risk paediatric cancers to develop an alternative, expression-based signature associated with CD8+ T-cell infiltration of the TIME. Furthermore, we explored transcriptional features of immune archetypes and T-cell receptor sequencing diversity, assessed the relationship between CD8+ and CD4+ abundance by IHC and deconvolution predictions and assessed the common adult biomarkers such as neoantigen load and TMB. RESULTS: A novel 15-gene immune signature, Immune Paediatric Signature Score (IPASS), was identified. Using this signature, we estimate up to 31% of high-risk cancers harbour infiltrating T-cells. In addition, we showed that PD-L1 protein expression is poorly correlated with PD-L1 RNA expression and TMB and neoantigen load are not predictive of T-cell infiltration in paediatrics. Furthermore, deconvolution algorithms are only weakly correlated with IHC measurements of T-cells. CONCLUSIONS: Our data provides new insights into the variable immune-suppressive mechanisms dampening responses in paediatric solid cancers. Effective immune-based interventions in high-risk paediatric cancer will require individualised analysis of the TIME.


Subject(s)
B7-H1 Antigen , Neoplasms , Adult , Humans , Child , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Neoplasms/genetics , CD8-Positive T-Lymphocytes/metabolism , Biomarkers, Tumor/genetics , Tumor Microenvironment/genetics , Mutation
14.
Sci Rep ; 13(1): 3775, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882456

ABSTRACT

Diffuse midline gliomas (DMG) harbouring H3K27M mutation are paediatric tumours with a dismal outcome. Recently, a new subtype of midline gliomas has been described with similar features to DMG, including loss of H3K27 trimethylation, but lacking the canonical H3K27M mutation (H3-WT). Here, we report a cohort of five H3-WT tumours profiled by whole-genome sequencing, RNA sequencing and DNA methylation profiling and combine their analysis with previously published cases. We show that these tumours have recurrent and mutually exclusive mutations in either ACVR1 or EGFR and are characterised by high expression of EZHIP associated to its promoter hypomethylation. Affected patients share a similar poor prognosis as patients with H3K27M DMG. Global molecular analysis of H3-WT and H3K27M DMG reveal distinct transcriptome and methylome profiles including differential methylation of homeobox genes involved in development and cellular differentiation. Patients have distinct clinical features, with a trend demonstrating ACVR1 mutations occurring in H3-WT tumours at an older age. This in-depth exploration of H3-WT tumours further characterises this novel DMG, H3K27-altered sub-group, characterised by a specific immunohistochemistry profile with H3K27me3 loss, wild-type H3K27M and positive EZHIP. It also gives new insights into the possible mechanism and pathway regulation in these tumours, potentially opening new therapeutic avenues for these tumours which have no known effective treatment. This study has been retrospectively registered on clinicaltrial.gov on 8 November 2017 under the registration number NCT03336931 ( https://clinicaltrials.gov/ct2/show/NCT03336931 ).


Subject(s)
Genes, Homeobox , Glioma , Child , Humans , Histones/genetics , Methylation , Glioma/genetics , Mutation , ErbB Receptors/genetics , Activin Receptors, Type I
15.
Polymers (Basel) ; 15(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38231991

ABSTRACT

Polyamide 11 (PA11) is a plant-based nylon made from castor beans. Powder bed fusion laser sintering (PBF-LS) is an additive manufacturing process used for PA11 which allows for the reuse of the unsintered powder. The unsintered powder is mixed with virgin powders at different refresh rates, a process which has been studied extensively for most semi-crystalline polyamides. However, there is lack of information on the effect of using 100% reused PA11 powder and the effect of the number of times it is reused on its own, during powder bed fusion laser sintering. This paper investigates the effect of reusing PA11 powder in PBF-LS and the effect of the number of times it is reused on the dimensional accuracy, density and thermal and tensile properties. From the 100% virgin powder to the third reuse of the powder, there is a decrease in powder wastage, crystallinity and tensile strength. These are associated with the polymerisation and cross-linking process of polymer chains, upon exposure to high temperatures. This results in a higher molecular weight and, hence, a higher density. From the fourth reuse to the tenth reuse, the opposite is observed, which is associated with an increase in high-viscosity unmolten particles, resulting in defects in the PBF-LS parts.

16.
Ecol Evol ; 12(12): e9588, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36523520

ABSTRACT

The carnivorous pitcher plant Sarracenia purpurea is native to North America, but has been introduced into Europe, where it is now widespread. Understanding of how this species functions in its non-native range is limited. We measured pitcher morphology and prey capture by S. purpurea in its non-native range in Britain and Ireland. Pitchers were removed from different plants at each of six bogs covering the species range in Britain and Ireland (n = 10 pitchers per site). For each pitcher we counted and identified every prey item and took measurements of morphology. We also compiled prey capture data for existing studies in Europe and North America. Prey capture characteristics varied between sites in Britain and Ireland. The amount of prey captured varied 20-fold between sites and was partially explained by differences in pitcher size; larger pitchers caught more prey. The primary prey was Formicidae, Diptera and Coleoptera. At the rank of order, prey composition varied between bogs, some contained mainly Formicidae, some mainly Diptera and some a mix. Prey capture was less evenly distributed at some bogs compared to others, suggesting more specialization. There was no overall difference in prey capture (composition or evenness) at the rank of order between plants in Europe compared to those in North America. At the rank of species, prey capture varied between populations even within the same order. This study demonstrates a large amount of variability between sites in prey capture characteristics. This may reflect different site characteristics and/or plant strategies, which will likely impact plant function, and may impact the inquiline community. In terms of prey capture at the rank of order, S. purpurea functions identically in its non-native range. This supports its use as a model system in a natural experiment for understanding food webs.

17.
Vet Sci ; 9(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36006303

ABSTRACT

Sphingolipids are essential structural components of tear film that protect the surface of the eye from dehydration. A detailed analysis of the effects of pink eye infections on the sphingolipidome in cattle has not previously been undertaken. We recently published a new assay utilizing high-resolution mass spectrometric monitoring of the chloride adducts of sphingolipids that provides enhanced sensitivity and specificity. Utilizing this assay, we monitored decreases in the levels of tear film ceramides with short-chain fatty acids, hydroxy-ceramides, phytoceramides, and hydroxy-phytoceramides. Dihydroceramide levels were unaltered and increased levels of ceramides with long-chain fatty acids (24:0 and 24:1) were monitored in cattle with pink eye. The data from this pilot study (n = 8 controls and 8 pink eye) demonstrate a major disruption of the lipid tear film layer in pink eye disease, that can result in severe eye irritation and damage.

18.
Front Aging Neurosci ; 14: 981868, 2022.
Article in English | MEDLINE | ID: mdl-36004004

ABSTRACT

Ether glycerophospholipids (GPL) are involved in membrane fluidity and fusion. Vinyl-ether GPL are also conjectured to provide antioxidant capacity in the brain. The roles of these lipids in the processes involved in the development of dementia are not understood but choline and ethanolamine vinyl-ether GPL (i.e., plasmalogens) are decreased in the brains of subjects with dementia. In contrast, serine ether and vinyl-ether GPL have not been investigated in human brain. We therefore undertook an evaluation of these lipids, utilizing high-resolution mass spectrometry (HR-MS), in tissues from control and dementia subjects that we had previously characterized in-depth. We can report for the first time that a number of serine ether GPL and a more limited number of serine plasmalogens are present in human frontal cortex. In addition, we found that some of these frontal cortex lipids are decreased in Mild Cognitive Impairment (MCI), early-onset Alzheimer's disease (EOAD), and late-onset AD (LOAD). In contrast no alterations in serine ether GPL were monitored in the frontal cortex of donors with schizophrenia, demonstrating disease specificity. These data suggest that further studies of the roles of ether GPL, including serine ether GPL, in brain function are worthy of undertaking.

19.
Front Mol Neurosci ; 15: 835628, 2022.
Article in English | MEDLINE | ID: mdl-35782380

ABSTRACT

Human brain lipidomics have elucidated structural lipids and lipid signal transduction pathways in neurologic diseases. Such studies have traditionally sourced tissue exclusively from brain bank biorepositories, however, limited inventories signal that these facilities may not be able to keep pace with this growing research domain. Formalin fixed, whole body donors willed to academic institutions offer a potential supplemental tissue source, the lipid profiles of which have yet to be described. To determine the potential of these subjects in lipid analysis, the lipid levels of fresh and fixed frontal cortical gray matter of human donors were compared using high resolution electrospray ionization mass spectrometry. Results revealed commensurate levels of specific triacylglycerols, diacylglycerols, hexosyl ceramides, and hydroxy hexosyl ceramides. Baseline levels of these lipid families in human fixed tissue were identified via a broader survey study covering six brain regions: cerebellar gray matter, superior cerebellar peduncle, gray and subcortical white matter of the precentral gyrus, periventricular white matter, and internal capsule. Whole body donors may therefore serve as supplemental tissue sources for lipid analysis in a variety of clinical contexts, including Parkinson's disease, Alzheimer's disease, Lewy body dementia, multiple sclerosis, and Gaucher's disease.

20.
Am J Vet Res ; 83(9)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35895773

ABSTRACT

OBJECTIVE: To perform lipidomic analysis of surfactant and plasma from asthmatic and healthy horses. ANIMALS: 30 horses with clinical signs of asthma and 30 age-matched control horses. PROCEDURES: Detailed history, physical examination, CBC, and bronchoalveolar lavage fluid (BALF) cytologies were obtained. Asthmatic horses were grouped based on their BALF inflammatory profile: severe equine asthma (SEA), mild equine asthma with neutrophilic airway inflammation (MEA-N), or mild equine asthma with eosinophilic airway inflammation (MEA-E). Each asthma group was assigned its own age-matched control group. Lipidomic analysis was completed on surfactant and plasma. Surfactant protein D (SP-D) concentrations were measured in serum and BALF. RESULTS: SEA surfactant was characterized by a phospholipid deficit and altered composition (increased ceramides, decreased phosphatidylglycerol, and increased cyclic phosphatidic acid [cPA]). In comparison, MEA-N surfactant only had a decrease in select phosphatidylglycerol species and increased cPA levels. The plasma lipidomic profile was significantly different in all asthma groups compared to controls. Specifically, all groups had increased plasma phytoceramide. SEA horses had increased plasma cPA and diacylglycerol whereas MEA-N horses only had increased cPA. MEA-E horses had increases in select ceramides and dihydrocermides. Only SEA horses had significantly increased serum SP-D concentrations. CLINICAL RELEVANCE: The most significant surfactant alterations were present in SEA (altered phospholipid content and composition); only mild changes were observed in MEA-N horses. The plasma lipidomic profile was significantly altered in all groups of asthmatic horses and differed among groups. Data from a larger population of asthmatic horses are needed to assess implications for diagnosis, prognosis, and treatment.


Subject(s)
Asthma , Horse Diseases , Pulmonary Surfactants , Animals , Asthma/diagnosis , Asthma/veterinary , Bronchoalveolar Lavage Fluid , Ceramides , Horse Diseases/metabolism , Horses , Inflammation/veterinary , Lipidomics , Phosphatidylglycerols , Phospholipids , Pulmonary Surfactant-Associated Protein D , Pulmonary Surfactants/metabolism , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...