Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(4): 104100, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35402877

ABSTRACT

Pediatric osteosarcomas (OS) exhibit extensive genomic instability that has complicated the identification of new targeted therapies. We found the vast majority of 108 patient tumor samples and patient-derived xenografts (PDXs), which display an unusually dilated endoplasmic reticulum (ER), have reduced expression of four COPII vesicle components that trigger aberrant accumulation of procollagen-I protein within the ER. CRISPR activation technology was used to increase the expression of two of these, SAR1A and SEC24D, to physiological levels. This was sufficient to resolve the dilated ER morphology, restore collagen-I secretion, and enhance secretion of some extracellular matrix (ECM) proteins. However, orthotopic xenograft growth was not adversely affected by restoration of only SAR1A and SEC24D. Our studies reveal the mechanism responsible for the dilated ER that is a hallmark characteristic of OS and identify a highly conserved molecular signature for this genetically unstable tumor. Possible relationships of this phenotype to tumorigenesis are discussed.

2.
Eur J Med Chem ; 102: 9-13, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26241873

ABSTRACT

Breast cancer remains the leading cause of cancer-related death among women. The invasive triple-negative subtype is unresponsive to estrogen therapy, and few effective treatments are available. In search of new chemical scaffolds to target this disease, we conducted a phenotypic screen against the human breast carcinoma cell lines MDA-MB-231, MA11, and MCF-7 using terrestrial natural products. Natural products that preferentially inhibited proliferation of triple-negative MDA-MB-231 cells over estrogen receptor-positive cells were further studied; herein we focused on the abietanes. The activity of the abietane carnosol prompted us to generate a focus library from the readily available (+)-dehydroabietylamine. The lead compound 61 displayed a promising EC50 of 9.0 µM against MDA-MB-231 and our mechanistic studies indicate it induced apoptosis, which was associated with activation of caspase-9 and -3 and the cleavage of PARP. Here we describe our current progress towards this promising therapeutic candidate.


Subject(s)
Abietanes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Biological Products/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Abietanes/chemistry , Abietanes/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Biological Products/chemistry , Biological Products/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Discovery , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Molecular Structure , Stereoisomerism , Structure-Activity Relationship , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...