Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 154: 92-96, 2021 05.
Article in English | MEDLINE | ID: mdl-33549679

ABSTRACT

Alternative splicing is prevalent in the heart and implicated in many cardiovascular diseases, but not every alternative transcript is translated and detecting non-canonical isoforms at the protein level remains challenging. Here we show the use of a computation-assisted targeted proteomics workflow to detect protein alternative isoforms in the human heart. We build on a recent strategy to integrate deep RNA-seq and large-scale mass spectrometry data to identify candidate translated isoform peptides. A machine learning approach is then applied to predict their fragmentation patterns and design protein isoform-specific parallel reaction monitoring detection (PRM) assays. As proof-of-principle, we built PRM assays for 29 non-canonical isoform peptides and detected 22 peptides in a human heart lysate. The predictions-aided PRM assays closely mirrored synthetic peptide standards for non-canonical sequences. This approach may be useful for validating non-canonical protein identification and discovering functionally relevant isoforms in the heart.


Subject(s)
Alternative Splicing , Computational Biology , Myocardium/metabolism , Protein Isoforms , Proteome , Proteomics , Biomarkers , Computational Biology/methods , Humans , Machine Learning , Peptides , Proteomics/methods , Tandem Mass Spectrometry
2.
Sci Rep ; 10(1): 18440, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33116222

ABSTRACT

The heart is sensitive to oxidative damage but a global view on how the cardiac proteome responds to oxidative stressors has yet to fully emerge. Using quantitative tandem mass spectrometry, we assessed the effects of acute exposure of the oxidative stress inducer paraquat on protein expression in mouse hearts. We observed widespread protein expression changes in the paraquat-exposed heart especially in organelle-containing subcellular fractions. During cardiac response to acute oxidative stress, proteome changes are consistent with a rapid reduction of mitochondrial metabolism, coupled with activation of multiple antioxidant proteins, reduction of protein synthesis and remediation of proteostasis. In addition to differential expression, we saw evidence of spatial reorganizations of the cardiac proteome including the translocation of hexokinase 2 to more soluble fractions. Treatment with the antioxidants Tempol and MitoTEMPO reversed many proteomic signatures of paraquat but this reversal was incomplete. We also identified a number of proteins with unknown function in the heart to be triggered by paraquat, suggesting they may have functions in oxidative stress response. Surprisingly, protein expression changes in the heart correlate poorly with those in the lung, consistent with differential sensitivity or stress response in these two organs. The results and data set here could provide insights into oxidative stress responses in the heart and avail the search for new therapeutic targets.


Subject(s)
Myocardium/metabolism , Oxidative Stress/drug effects , Paraquat/pharmacology , Proteome/metabolism , Proteomics , Animals , Cyclic N-Oxides/pharmacology , Male , Mice , Organophosphorus Compounds/pharmacology , Piperidines/pharmacology , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...