Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Pathol ; 263(2): 178-189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551075

ABSTRACT

The effects of the obliteration of portal venules (OPV) in cirrhotic portal hypertension are poorly understood. To investigate its contribution to portal hypertension in biliary cirrhosis and its underlying mechanism, we evaluated OPV using two-dimensional (2D) histopathology in liver explants from patients with biliary atresia (BA, n = 63), primary biliary cholangitis (PBC, n = 18), and hepatitis B-related cirrhosis (Hep-B-cirrhosis, n = 35). Then, three-dimensional (3D) OPV was measured by X-ray phase-contrast CT in two parallel models in rats following bile duct ligation (BDL) or carbon tetrachloride (CCl4) administration, representing biliary cirrhosis and post-necrotic cirrhosis, respectively. The portal pressure was also measured in the two models. Finally, the effects of proliferative bile ducts on OPV were investigated. We found that OPV was significantly more frequent in patients with biliary cirrhosis, including BA (78.57 ± 16.45%) and PBC (60.00 ± 17.15%), than that in Hep-B-cirrhotic patients (29.43 ± 14.94%, p < 0.001). OPV occurred earlier, evidenced by the paired liver biopsy at a Kasai procedure (KP), and was irreversible even after a successful KP in the patients with BA. OPV was also significantly more frequent in the BDL models than in the CCl4 models, as shown by 2D and 3D quantitative analysis. Portal pressure was significantly higher in the BDL model than that in the CCl4 model. With the proliferation of bile ducts, portal venules were compressed and irreversibly occluded, contributing to the earlier and higher portal pressure in biliary cirrhosis. OPV, as a pre-sinusoidal component, plays a key role in the pathogenesis of portal hypertension in biliary cirrhosis. The proliferated bile ducts and ductules gradually take up the 'territory' originally attributed to portal venules and compress the portal venules, which may lead to OPV in biliary cirrhosis. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Hypertension, Portal , Liver Cirrhosis, Biliary , Portal Vein , Hypertension, Portal/pathology , Hypertension, Portal/physiopathology , Animals , Liver Cirrhosis, Biliary/pathology , Liver Cirrhosis, Biliary/complications , Liver Cirrhosis, Biliary/physiopathology , Male , Humans , Female , Portal Vein/pathology , Venules/pathology , Rats , Adult , Portal Pressure , Middle Aged , Disease Models, Animal , Liver/pathology , Liver/blood supply , Rats, Sprague-Dawley , Bile Ducts/pathology , Young Adult , Adolescent
2.
Kidney Int ; 105(1): 84-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37839695

ABSTRACT

Clinical verification of adoptively transferred regulatory T cell (Treg) efficacy in transplantation remains challenging. Here, we examined the influence of autologous ex vivo-expanded polyclonal Tregs on kidney graft survival in a clinically relevant non-human primate model. Peripheral blood Tregs were isolated and expanded using artificial antigen presenting cells. Immunosuppression was comprised of tapered tacrolimus and CTLA4 immunoglobulin, in five animals each without or with Treg infusions. Escalating Treg doses were administered 6, 10, 13, 16, 20, 23, 27 and 30 days after transplant. Infused Tregs were monitored for Treg signature, anti-apoptotic (Bcl-2) and proliferation (Ki67) marker expression. Treg infusions prolonged median graft survival time significantly from 35 to 70 days. Treg marker (Ki67 and Bcl-2) expression by infused Tregs diminished after their infusion but remained comparable to that of circulating native Tregs. No major changes in circulating donor-reactive T cell responses or total Treg percentages, or in graft-infiltrating T cell subsets were observed with Treg infusion. However, Treg infusion was associated with significant increases in CD163 expression by circulating HLA-DR+ myeloid cells and elevated levels of circulating soluble CD163. Further, graft-infiltrating CD163+ cells were increased with Treg infusion. Thus, multiple Treg infusions were associated with M2-like myeloid cell enhancement that may mediate immunomodulatory, anti-inflammatory and graft reparative effects.


Subject(s)
Primates , T-Lymphocytes, Regulatory , Animals , Ki-67 Antigen/metabolism , Kidney , Allografts , Myeloid Cells , Proto-Oncogene Proteins c-bcl-2/metabolism
3.
Sci Immunol ; 8(82): eadd8454, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37083450

ABSTRACT

Our understanding of tissue-resident memory T (TRM) cell biology has been largely developed from acute infection models in which antigen is cleared and sterilizing immunity is achieved. Less is known about TRM cells in the context of chronic antigen persistence and inflammation. We investigated factors that underlie TRM maintenance in a kidney transplantation model in which TRM cells drive rejection. In contrast to acute infection, we found that TRM cells declined markedly in the absence of cognate antigen, antigen presentation, or antigen sensing by the T cells. Depletion of graft-infiltrating dendritic cells or interruption of antigen presentation after TRM cells were established was sufficient to disrupt TRM maintenance and reduce allograft pathology. Likewise, removal of IL-15 transpresentation or of the IL-15 receptor on T cells during TRM maintenance led to a decline in TRM cells, and IL-15 receptor blockade prevented chronic rejection. Therefore, antigen and IL-15 presented by dendritic cells play nonredundant key roles in CD8 TRM cell maintenance in settings of antigen persistence and inflammation. These findings provide insights that could lead to improved treatment of chronic transplant rejection and autoimmunity.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-15 , Humans , Antigens , Inflammation , Memory T Cells
4.
Hepatology ; 77(2): 355-366, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35819312

ABSTRACT

BACKGROUND AND AIMS: In otherwise near-normal appearing biopsies by routine light microscopy, next-generation pathology (NGP) detected close pairings (immune pairs; iPAIRs) between lymphocytes and antigen-presenting cells (APCs) that predicted immunosuppression weaning failure in pediatric liver transplant (LTx) recipients (Immunosuppression Withdrawal for Stable Pediatric Liver Transplant Recipients [iWITH], NCT01638559). We hypothesized that NGP-detected iPAIRs enrich for true immune synapses, as determined by nuclear shape metrics, intercellular distances, and supramolecular activation complex (SMAC) formation. APPROACH AND RESULTS: Intralobular iPAIRs (CD45 high lymphocyte-major histocompatibility complex II + APC pairs; n = 1167, training set) were identified at low resolution from multiplex immunohistochemistry-stained liver biopsy slides from several multicenter LTx immunosuppression titration clinical trials (iWITH; NCT02474199 (Donor Alloantigen Reactive Tregs (darTregs) for Calcineurin Inhibitor (CNI) Reduction (ARTEMIS); Prospective Longitudinal Study of iWITH Screen Failures Secondary to Histopathology). After excluding complex multicellular aggregates, high-resolution imaging was used to examine immune synapse formation ( n = 998). By enriching for close intranuclear lymphocyte-APC distance (mean: 0.713 µm) and lymphocyte nuclear flattening (mean ferret diameter: 2.1), SMAC formation was detected in 29% of iPAIR-engaged versus 9.5% of unpaired lymphocytes. Integration of these morphometrics enhanced NGP detection of immune synapses (ai-iSYN). Using iWITH preweaning biopsies from eligible patients ( n = 53; 18 tolerant, 35 nontolerant; testing set), ai-iSYN accurately predicted (87.3% accuracy vs. 81.4% for iPAIRs; 100% sensitivity, 75% specificity) immunosuppression weaning failure. This confirmed the presence and importance of intralobular immune synapse formation in liver allografts. Stratification of biopsy mRNA expression data by immune synapse quantity yielded the top 20 genes involved in T cell activation and immune synapse formation and stability. CONCLUSIONS: NGP-detected immune synapses (subpathological rejection) in LTx patients prior to immunosuppression reduction suggests that NGP-detected (allo)immune activity usefulness for titration of immunosuppressive therapy in various settings.


Subject(s)
Ferrets , T-Lymphocytes , Humans , Animals , Child , Prospective Studies , Longitudinal Studies , Liver , Antigen-Presenting Cells , Allografts , Graft Rejection/diagnosis , Immunosuppressive Agents/therapeutic use
5.
Hepatol Commun ; 6(4): 710-727, 2022 04.
Article in English | MEDLINE | ID: mdl-34725972

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. Liver transplantation has been an effective approach to treat liver cancer. However, significant numbers of patients with HCC experience cancer recurrence, and the selection of suitable candidates for liver transplant remains a challenge. We developed a model to predict the likelihood of HCC recurrence after liver transplantation based on transcriptome and whole-exome sequencing analyses. We used a training cohort and a subsequent testing cohort based on liver transplantation performed before or after the first half of 2012. We found that the combination of transcriptome and mutation pathway analyses using a random forest machine learning correctly predicted HCC recurrence in 86.8% of the training set. The same algorithm yielded a correct prediction of HCC recurrence of 76.9% in the testing set. When the cohorts were combined, the prediction rate reached 84.4% in the leave-one-out cross-validation analysis. When the transcriptome analysis was combined with Milan criteria using the k-top scoring pairs (k-TSP) method, the testing cohort prediction rate improved to 80.8%, whereas the training cohort and the combined cohort prediction rates were 79% and 84.4%, respectively. Application of the transcriptome/mutation pathways RF model on eight tumor nodules from 3 patients with HCC yielded 8/8 consistency, suggesting a robust prediction despite the heterogeneity of HCC. Conclusion: The genome prediction model may hold promise as an alternative in selecting patients with HCC for liver transplant.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Carcinoma, Hepatocellular/diagnosis , Exome/genetics , Humans , Liver Neoplasms/diagnosis , Neoplasm Recurrence, Local/diagnosis , Retrospective Studies , Transcriptome/genetics , Exome Sequencing
6.
Curr Opin Organ Transplant ; 25(4): 412-419, 2020 08.
Article in English | MEDLINE | ID: mdl-32520786

ABSTRACT

PURPOSE OF REVIEW: Transplant pathology contributes substantially to personalized treatment of organ allograft recipients. Rapidly advancing next-generation human leukocyte antigen (HLA) sequencing and pathology are enhancing the abilities to improve donor/recipient matching and allograft monitoring. RECENT FINDINGS: The present review summarizes the workflow of a prototypical patient through a pathology practice, highlighting histocompatibility assessment and pathologic review of tissues as areas that are evolving to incorporate next-generation technologies while emphasizing critical needs of the field. SUMMARY: Successful organ transplantation starts with the most precise pratical donor-recipient histocompatibility matching. Next-generation sequencing provides the highest resolution donor-recipient matching and enables eplet mismatch scores and more precise monitoring of donor-specific antibodies (DSAs) that may arise after transplant. Multiplex labeling combined with hand-crafted machine learning is transforming traditional histopathology. The combination of traditional blood/body fluid laboratory tests, eplet and DSA analysis, traditional and next-generation histopathology, and -omics-based platforms enables risk stratification and identification of early subclinical molecular-based changes that precede a decline in allograft function. Needs include software integration of data derived from diverse platforms that can render the most accurate assessment of allograft health and needs for immunosuppression adjustments.


Subject(s)
Organ Transplantation/methods , Precision Medicine/methods , HLA Antigens/immunology , Histocompatibility Testing , Humans , Tissue Donors , Transplantation Immunology , Transplantation, Homologous , Transplants/immunology , Transplants/pathology
7.
Transplantation ; 103(7): 1306-1322, 2019 07.
Article in English | MEDLINE | ID: mdl-30768568

ABSTRACT

Traditional histopathological allograft biopsy evaluation provides, within hours, diagnoses, prognostic information, and mechanistic insights into disease processes. However, proponents of an array of alternative monitoring platforms, broadly classified as "invasive" or "noninvasive" depending on whether allograft tissue is needed, question the value proposition of tissue histopathology. The authors explore the pros and cons of current analytical methods relative to the value of traditional and illustrate advancements of next-generation histopathological evaluation of tissue biopsies. We describe the continuing value of traditional histopathological tissue assessment and "next-generation pathology (NGP)," broadly defined as staining/labeling techniques coupled with digital imaging and automated image analysis. Noninvasive imaging and fluid (blood and urine) analyses promote low-risk, global organ assessment, and "molecular" data output, respectively; invasive alternatives promote objective, "mechanistic" insights by creating gene lists with variably increased/decreased expression compared with steady state/baseline. Proponents of alternative approaches contrast their preferred methods with traditional histopathology and: (1) fail to cite the main value of traditional and NGP-retention of spatial and inferred temporal context available for innumerable objective analyses and (2) belie an unfamiliarity with the impact of advances in imaging and software-guided analytics on emerging histopathology practices. Illustrative NGP examples demonstrate the value of multidimensional data that preserve tissue-based spatial and temporal contexts. We outline a path forward for clinical NGP implementation where "software-assisted sign-out" will enable pathologists to conduct objective analyses that can be incorporated into their final reports and improve patient care.


Subject(s)
Diagnosis, Computer-Assisted , Image Interpretation, Computer-Assisted , Microscopy , Organ Transplantation/adverse effects , Postoperative Complications/pathology , Allografts , Biopsy , Graft Survival , Humans , Predictive Value of Tests , Time Factors , Treatment Outcome , Workflow
8.
Mol Genet Genomic Med ; 6(2): 276-281, 2018 03.
Article in English | MEDLINE | ID: mdl-29363275

ABSTRACT

BACKGROUND: Hypergonadotropic hypogonadism (HH) is a genetically heterogeneous disorder that usually presents with amenorrhea, atrophic ovaries, and low estrogen. Most cases of HH are idiopathic and nonsyndromic. Nucleoporin 107 (NUP107), a protein involved in transport between cytoplasm and nucleus with putative roles in meiosis/mitosis progression, was recently implicated as a cause of HH. We identified a NUP107 genetic variant in a nonconsanguineous family with two sisters affected with primary amenorrhea and HH, and generated a mouse model that carried the human variant. METHODS: We performed a high-resolution X-chromosome microarray and whole exome sequencing on parents and two sisters with HH to identify pathogenic variants. We generated a mouse model of candidate NUP107 variant using CRISPR/Cas9. RESULTS: Whole exome sequencing identified a novel and rare missense variant in the NUP107 gene (c.1063C>T, p.R355C) in both sisters with HH. In order to determine functional significance of this variant, we used CRISPR/Cas9 to introduce the human variant into the mouse genome. Mice with the homolog of the R355C variant, as well as the nine base pairs deletion in Nup107 had female subfertility. CONCLUSIONS: Our findings indicate that NUP107 R355C variant falls in the category of variant of unknown significance as the cause of HH and infertility.


Subject(s)
Mutation, Missense , Nuclear Pore Complex Proteins/genetics , Primary Ovarian Insufficiency/genetics , Adult , Amenorrhea/genetics , Animals , Base Sequence , Consanguinity , Disease Models, Animal , Female , Humans , Hypogonadism/genetics , Male , Menopause, Premature/genetics , Mice , Nuclear Pore Complex Proteins/metabolism , Pedigree , Polymorphism, Single Nucleotide , Exome Sequencing
9.
J Heart Lung Transplant ; 36(12): 1336-1343, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29055602

ABSTRACT

BACKGROUND: Histopathologic features of late graft dysfunction (LGD) in endomyocardial biopsies (EMBs) after pediatric heart transplantation (HT) have been incompletely described and rarely quantified. We employed automated, morphometric analysis of whole-slide EMB images to objectively quantify fibrosis and microvasculopathy after pediatric HT. METHODS: Nine recipients with clinical LGD were matched with controls on age, listing diagnosis, crossmatch and time since HT. Fibrosis was quantified as percent tissue area with fibrosis and capillary density as capillaries per unit area, number of capillary "neighbors" within 30 µm of each myocyte and myocyte-to-nearest-capillary diffusion distance. Clinical data, including all EMB reports, were also reviewed. RESULTS: The groups were well matched for age at HT (median 4.0 vs 3.1 years), listing diagnosis (50% congenital heart disease for each), positive crossmatch (11% each) and days post-HT (2,628 vs 2,894, p = 0.69). Despite a similar number of previous EMBs (median 23 each, p = 0.43), areas occupied by fibrosis were greater in LGD cases (44.5% vs 23.2%, p = 0.012). Capillary number/area data were not statistically different between LGD cases and controls (378/mm2 vs 559/mm2, p = 0.57), but LGD cases more commonly had zero capillary neighbors (35% vs 20%, p = 0.02) and greater myocyte-to-nearest-capillary distances (27.1 µm vs 18.7 µm, p = 0.005). Cumulative rejection history correlated with fibrosis (r = 0.49, p = 0.039) and myocyte-to-nearest-capillary distance (r = 0.5, p = 0.036). CONCLUSIONS: LGD after pediatric HT is associated with previous rejection and characterized histologically by fibrosis and microvasculopathy, which are not readily appreciated by traditional semi-quantitative EMB analysis. Software-assisted EMB analysis may enable greater pathophysiologic understanding of LGD and identification of targets for future study and intervention.


Subject(s)
Automation/methods , Coronary Vessels/pathology , Delayed Graft Function/pathology , Heart Defects, Congenital/surgery , Heart Transplantation/adverse effects , Myocardium/pathology , Allografts , Biopsy , Child , Child, Preschool , Coronary Circulation , Coronary Vessels/physiopathology , Delayed Graft Function/physiopathology , Female , Fibrosis/pathology , Humans , Infant , Male , Retrospective Studies , Time Factors
10.
Fertil Steril ; 107(2): 457-466.e9, 2017 02.
Article in English | MEDLINE | ID: mdl-27889101

ABSTRACT

OBJECTIVE: To determine the genomic signatures of human uterine leiomyomas and prevalence of MED12 mutations in human uterine leiomyosarcomas. DESIGN: Retrospective cohort study. SETTING: Not applicable. PATIENT(S): This study included a set of 16 fresh frozen leiomyoma and corresponding unaffected myometrium specimens as well as 153 leiomyosarcomas collected from women diagnosed with uterine leiomyomas or leiomyosarcomas who underwent clinically indicated abdominal hysterectomy. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Whole exome sequencing and high-resolution X-chromosome and whole genome single nucleotide polymorphism microarray analyses were performed on leiomyoma samples negative for the known MED12 mutations and compared with their corresponding myometrium. Leiomyosarcoma specimens were examined for exon 2 MED12 mutations to evaluate the frequency of MED12 mutated leiomyosarcomas. RESULT(S): Our results indicate remarkable genomic heterogeneity of leiomyoma lesions. MED12-negative leiomyomas contain copy number alterations involving the Mediator complex subunits such as MED8, MED18, CDK8, and long intergenic nonprotein coding RNA340 (CASC15), which may affect the Mediator architecture and/or its transcriptional activity. We also identified mutations in a number of genes that were implicated in leiomyomagenesis such as COL4A6, DCN, and AHR, as well as novel genes: NRG1, ADAM18, HUWE1, FBXW4, FBXL13, and CAPRIN1. CONCLUSION(S): Mutations in genes implicated in cell-to-cell interactions and remodeling of the extracellular matrix and genomic aberrations involving genes coding for the Mediator complex subunits were identified in uterine leiomyomas. Additionally, we discovered that ∼4.6% of leiomyosarcomas harbored MED12 exon 2 mutations, but the relevance of this association with molecular pathogenesis of leiomyosarcoma remains unknown.


Subject(s)
Biomarkers, Tumor/genetics , DNA Mutational Analysis , Exome , Gene Expression Profiling/methods , Leiomyoma/genetics , Mediator Complex/genetics , Mutation , Oligonucleotide Array Sequence Analysis , Uterine Neoplasms/genetics , Chromosomes, Human, X , Exons , Female , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Karyotype , Leiomyoma/ethnology , Leiomyoma/pathology , Pennsylvania , Phenotype , Retrospective Studies , Uterine Neoplasms/ethnology , Uterine Neoplasms/pathology
11.
J Clin Invest ; 125(1): 258-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25437880

ABSTRACT

Premature ovarian failure (POF) is a genetically and phenotypically heterogeneous disorder that includes individuals with manifestations ranging from primary amenorrhea to loss of menstrual function prior to age 40. POF presents as hypergonadotropic hypogonadism and can be part of a syndrome or occur in isolation. Here, we studied 3 sisters with primary amenorrhea, hypothyroidism, and hypergonadotropic hypogonadism. The sisters were born to parents who are first cousins. SNP analysis and whole-exome sequencing revealed the presence of a pathogenic variant of the minichromosome maintenance 8 gene (MCM8, c.446C>G; p.P149R) located within a region of homozygosity that was present in the affected daughters but not in their unaffected sisters. Because MCM8 participates in homologous recombination and dsDNA break repair, we tested fibroblasts from the affected sisters for hypersensitivity to chromosomal breaks. Compared with fibroblasts from unaffected daughters, chromosomal break repair was deficient in fibroblasts from the affected individuals, likely due to inhibited recruitment of MCM8 p.P149R to sites of DNA damage. Our study identifies an autosomal recessive disorder caused by an MCM8 mutation that manifests with endocrine dysfunction and genomic instability.


Subject(s)
Chromosomal Instability , Exome , Minichromosome Maintenance Proteins/genetics , Primary Ovarian Insufficiency/genetics , Consanguinity , DNA Repair , Female , Genetic Association Studies , Genetic Predisposition to Disease , HEK293 Cells , Humans , Lod Score , Middle Aged , Pedigree , Polymorphism, Single Nucleotide , Protein Binding
12.
Am J Hum Genet ; 95(6): 754-62, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25480036

ABSTRACT

Premature ovarian failure (POF) is genetically heterogeneous and manifests as hypergonadotropic hypogonadism either as part of a syndrome or in isolation. We studied two unrelated consanguineous families with daughters exhibiting primary amenorrhea, short stature, and a 46,XX karyotype. A combination of SNP arrays, comparative genomic hybridization arrays, and whole-exome sequencing analyses identified homozygous pathogenic variants in MCM9, a gene implicated in homologous recombination and repair of double-stranded DNA breaks. In one family, the MCM9 c.1732+2T>C variant alters a splice donor site, resulting in abnormal alternative splicing and truncated forms of MCM9 that are unable to be recruited to sites of DNA damage. In the second family, MCM9 c.394C>T (p.Arg132(∗)) results in a predicted loss of functional MCM9. Repair of chromosome breaks was impaired in lymphocytes from affected, but not unaffected, females in both families, consistent with MCM9 function in homologous recombination. Autosomal-recessive variants in MCM9 cause a genomic-instability syndrome associated with hypergonadotropic hypogonadism and short stature. Preferential sensitivity of germline meiosis to MCM9 functional deficiency and compromised DNA repair in the somatic component most likely account for the ovarian failure and short stature.


Subject(s)
Amenorrhea/genetics , Chromosomal Instability/genetics , Dwarfism/genetics , Minichromosome Maintenance Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Primary Ovarian Insufficiency/genetics , Abnormal Karyotype , Adolescent , Adult , Base Sequence , Cell Line , Consanguinity , DNA Breaks, Double-Stranded , DNA Repair , Exome/genetics , Female , Homologous Recombination , Homozygote , Humans , Middle Aged , Molecular Sequence Data , Mutation , Pedigree , RNA Splice Sites , Sequence Analysis, DNA , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...