Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Biofilms Microbiomes ; 8(1): 19, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393409

ABSTRACT

Wounds can commonly become infected with polymicrobial biofilms containing bacterial and fungal microorganisms. Microbial colonization of the wound can interfere with sufficient healing and repair, leading to high rates of chronicity in certain individuals, which can have a huge socioeconomic burden worldwide. One route for alleviating biofilm formation in chronic wounds is sufficient treatment of the infected area with topical wound washes and ointments. Thus, the primary aim here was to create a complex in vitro biofilm model containing a range of microorganisms commonly isolated from the infected wound milieu. These polymicrobial biofilms were treated with three conventional anti-biofilm wound washes, chlorhexidine (CHX), povidone-iodine (PVP-I), and hydrogen peroxide (H2O2), and efficacy against the microorganisms assessed using live/dead qPCR. All treatments reduced the viability of the biofilms, although H2O2 was found to be the most effective treatment modality. These biofilms were then co-cultured with 3D skin epidermis to assess the inflammatory profile within the tissue. A detailed transcriptional and proteomic profile of the epidermis was gathered following biofilm stimulation. At the transcriptional level, all treatments reduced the expression of inflammatory markers back to baseline (untreated tissue controls). Olink technology revealed a unique proteomic response in the tissue following stimulation with untreated and CHX-treated biofilms. This highlights treatment choice for clinicians could be dictated by how the tissue responds to such biofilm treatment, and not merely how effective the treatment is in killing the biofilm.


Subject(s)
Hydrogen Peroxide , Wound Infection , Biofilms , Chlorhexidine , Epidermis , Humans , Hydrogen Peroxide/pharmacology , Proteomics , Wound Infection/drug therapy , Wound Infection/microbiology
2.
Microorganisms ; 9(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379333

ABSTRACT

Background: Existing standardized biofilm assays focus on simple mono-species or bacterial-only models. Incorporating Candida albicans into complex biofilm models can offer a more appropriate and relevant polymicrobial biofilm for the development of oral health products. Aims: This study aimed to assess the importance of interkingdom interactions in polymicrobial oral biofilm systems with or without C. albicans, and test how these models respond to oral therapeutic challenges in vitro. Materials and Methods: Polymicrobial biofilms (two models containing 5 and 10 bacterial species, respectively) were created in parallel in the presence and absence of C. albicans and challenged using clinically relevant antimicrobials. The metabolic profiles and biomasses of these complex biofilms were estimated using resazurin dye and crystal violet stain, respectively. Quantitative PCR was utilized to assess compositional changes in microbial load. Additional assays, for measurements of pH and lactate, were included to monitor fluctuations in virulence "biomarkers." Results: An increased level of metabolic activity and biomass in the presence of C. albicans was observed. Bacterial load was increased by more than a factor of 10 in the presence of C. albicans. Assays showed inclusion of C. albicans impacted the biofilm virulence profiles. C. albicans did not affect the biofilms' responses to the short-term incubations with different treatments. Conclusions: The interkingdom biofilms described herein are structurally robust and exhibit all the hallmarks of a reproducible model. To our knowledge, these data are the first to test the hypothesis that yeasts may act as potential "keystone" components of oral biofilms.

3.
Int J Chron Obstruct Pulmon Dis ; 1(2): 189-99, 2006.
Article in English | MEDLINE | ID: mdl-18046896

ABSTRACT

Chronic lipopolysaccharide (LPS) exposure may contribute to the pathogenesis of a number of lung diseases including COPD and emphysema. We sought to develop a large-animal model of emphysema using repeated LPS administration into sheep lung segments. An experimental protocol was designed to facilitate comparisons with elastase-treated and control segments within the same lung of individual sheep. Histopathologic evaluation of segments treated with LPS demonstrated low-grade inflammation characterized by an increase in the number of intra-alveolar macrophages and lymphocytes. Treated segments demonstrated a significant reduction in airspace surface area (ASA), an increase in percent disrupted alveolar attachments and the distance between normal alveolar attachments, and a reduction in the number of normal alveolar attachments surrounding nonrespiratory bronchioles. Coefficient of variation of individual ASA measurements in elastase-treated segments was indicative of a heterogeneous parenchymal response, in contrast to that associated with chronic LPS treatment. Our results demonstrate that chronic LPS treatment of individual lung segments in sheep induces microscopic emphysema qualitatively and quantitatively consistent with both accepted pathologic definitions of this condition and with that produced by airway instillation of elastolytic enzymes. Development of this phenotype is associated with evidence of downregulated activation of transforming growth factor beta.


Subject(s)
Disease Models, Animal , Emphysema , Lipopolysaccharides/administration & dosage , Pancreatic Elastase/administration & dosage , Animals , Bronchi , Bronchoalveolar Lavage Fluid , Instillation, Drug , Sheep
4.
Clin Diagn Lab Immunol ; 9(4): 828-32, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12093681

ABSTRACT

The pol and gag gene fragments of small ruminant lentivirus field isolates collected in the last decade in Italy were amplified, sequenced, and analyzed. Phylogenetic analysis revealed that the majority of ovine isolates form a distinct cluster more similar to caprine lentivirus prototypes than to the visna virus prototype. These findings confirm and extend those reported by Leroux et al. (Arch. Virol., 142:1125-1137, 1997). Moreover, we observed that a variable region of Gag, included in the fragment analyzed, corresponded to one of the three major capsid antigen epitopes, which suggests that the antibody response to this epitope may be type specific. To test this hypothesis, two recombinant peptides, derived from the Icelandic prototype K1514 and this novel genotype, were expressed and used in an enzyme-linked immunosorbent assay to screen a panel of ovine and caprine sera collected from different geographical locations in Italy. Several sera reacted in a type-specific manner, indicating that in a diagnostic setting the combination of at least these two type-specific peptides is necessary to cover a wide range of infections. Additionally, these results support the hypothesis of cross-species transmission based on the phylogenetic analysis described above. This has implications for the control and eradication of small ruminant lentivirus infections.


Subject(s)
Capsid/immunology , Genetic Heterogeneity , Immunodominant Epitopes/genetics , Lentivirus/genetics , Ruminants/virology , Amino Acid Sequence , Animals , Antigens, Viral/genetics , Arthritis-Encephalitis Virus, Caprine/genetics , Arthritis-Encephalitis Virus, Caprine/immunology , Goats , Immunoassay/standards , Italy , Lentivirus/immunology , Molecular Sequence Data , Phylogeny , Sensitivity and Specificity , Sheep , Visna-maedi virus/genetics , Visna-maedi virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...