Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Biodivers Data J ; 12: e120128, 2024.
Article in English | MEDLINE | ID: mdl-39050045

ABSTRACT

Background: During the 2022 Nekton Maldives Mission, we deployed a variety of platforms (snorkelling, remotely-operated vehicles and manned submersibles) to conduct video surveys of the biodiversity and composition of shallow (< 30 m), mesophotic (30-150 m) and deep-sea (> 150 m) benthos found in the Maldives' central and southern atolls. In total, ~ 80 hrs of stereo-video footage were collected during the benthic transect surveys, which were subsequently processed using annotation software in order to evaluate benthic biodiversity and community composition. Here, we present a photographic guide for the visual, in situ identification of reef benthos encountered, including corals, sponges and other invertebrates that inhabit Maldives' nearshore habitats. We hope that this identification guide will aid future imagery-based surveys or observations of organisms during fieldwork. New information: A total of 283 morphotypes were identified, including those belonging to Octocorallia (61), Scleractinia (57), Porifera (38), Asteroidea (22), Antipatharia (15), Decapoda (13), Hydrozoa (12), Holothuroidea (10), Actiniaria (9), Echinoidea (8), Annelida (6), Chlorophyta (5), Gastropoda (4), Bivalvia (4), Ascidiacea (3), Crinoidea (3), Bryozoa (2), Cyanobacteria (2), Zoantharia (2), Cephalopoda (1), Ceriantharia (1), Corallimorpharia (1), Ctenophora (1), Ophiuroidea (1), Rhodophyta (1) and to an unknown category (1). Out of these, we identified 40 to species level, 120 to genus, 47 to family, 14 to order and suborder, 58 to class and subclass, two to phylum and one was of unknown phylum. This represents the first attempt to catalogue the mesophotic and deep-sea benthic megafaunal diversity in the Maldives using underwater imagery.

4.
Nature ; 619(7969): 311-316, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438592

ABSTRACT

Coral reefs are losing the capacity to sustain their biological functions1. In addition to other well-known stressors, such as climatic change and overfishing1, plastic pollution is an emerging threat to coral reefs, spreading throughout reef food webs2, and increasing disease transmission and structural damage to reef organisms3. Although recognized as a global concern4, the distribution and quantity of plastics trapped in the world's coral reefs remains uncertain3. Here we survey 84 shallow and deep coral ecosystems at 25 locations across the Pacific, Atlantic and Indian ocean basins for anthropogenic macrodebris (pollution by human-generated objects larger than 5 centimetres, including plastics), performing 1,231 transects. Our results show anthropogenic debris in 77 out of the 84 reefs surveyed, including in some of Earth's most remote and near-pristine reefs, such as in uninhabited central Pacific atolls. Macroplastics represent 88% of the anthropogenic debris, and, like other debris types, peak in deeper reefs (mesophotic zones at 30-150 metres depth), with fishing activities as the main source of plastics in most areas. These findings contrast with the global pattern observed in other nearshore marine ecosystems, where macroplastic densities decrease with depth and are dominated by consumer items5. As the world moves towards a global treaty to tackle plastic pollution6, understanding its distribution and drivers provides key information to help to design the strategies needed to address this ubiquitous threat.


Subject(s)
Coral Reefs , Plastics , Plastics/adverse effects , Plastics/analysis , Food Chain , Pacific Ocean , Atlantic Ocean , Indian Ocean , Particle Size , Human Activities , Hunting
5.
Sci Total Environ ; 872: 162111, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36773924

ABSTRACT

Tropical deep reefs (>30 m) are biologically and ecologically unique ecosystems with a higher geographic reach to shallow (<30 m) reefs. Yet they are poorly understood and rarely considered in conservation practices. Here, we characterise benthic and fish communities across a depth gradient (10-350 m) in remote coral atolls in Seychelles, Western Indian Ocean. Using taxonomic and trait-based approaches we present the taxonomic and functional composition of shallow and deep reef communities, with distinct communities and traits dominating different depths. Depth-related changes in community metrics (taxa richness, abundance and biomass) and functional diversity metrics (richness, dispersion, and evenness) indicate complex relationships across different biological components (fish, benthos) that differ between shallow and deep reefs. These in turn translate into different patterns of reef resilience against disturbance or species invasions with depth. Notably, deep reefs host on average fewer and less abundant taxa but with higher functional contribution and originality scores, some of which are of conservation concern. Overall, the results highlight the unique nature of deep reefs that requires their explicit consideration in conservation and management activities.


Subject(s)
Anthozoa , Ecosystem , Animals , Coral Reefs , Indian Ocean , Biodiversity , Biomass , Fishes
6.
Biology (Basel) ; 11(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36552215

ABSTRACT

Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management.

7.
Adv Mar Biol ; 93: 23-115, 2022.
Article in English | MEDLINE | ID: mdl-36435592

ABSTRACT

We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases.


Subject(s)
Biodiversity , Ecosystem
9.
Sci Rep ; 12(1): 4217, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273306

ABSTRACT

The Irish Sea is an important area for Norway Lobster Nephrops norvegicus fisheries, which are the most valuable fishing resource in the UK. Norway lobster are known to ingest microplastic pollution present in the sediment and have displayed reduced body mass when exposed to microplastic pollution. Here, we identified microplastic pollution in the Irish Sea fishing grounds through analysis of 24 sediment samples from four sites of differing proximity to the Western Irish Sea Gyre in both 2016 and 2019. We used µFTIR spectroscopy to identify seven polymer types, and a total of 77 microplastics consisting of fibres and fragments. The mean microplastics per gram of sediment ranged from 0.13 to 0.49 and 0 to 1.17 MP/g in 2016 and 2019, respectively. There were no differences in the microplastic counts across years, and there was no correlation of microplastic counts with proximity to the Western Irish Sea Gyre. Considering the consistently high microplastic abundance found in the Irish Sea, and the propensity of N. norvegicus to ingest and be negatively impacted by them, we suggest microplastic pollution levels in the Irish Sea may have adverse impacts on N. norvegicus and negative implications for fishery sustainability in the future.


Subject(s)
Decapoda , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Hunting , Microplastics/toxicity , Plastics , Water Pollutants, Chemical/analysis
10.
Sci Total Environ ; 806(Pt 1): 150392, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34583073

ABSTRACT

Plastic pollution and climate change have commonly been treated as two separate issues and sometimes are even seen as competing. Here we present an alternative view that these two issues are fundamentally linked. Primarily, we explore how plastic contributes to greenhouse gas (GHG) emissions from the beginning to the end of its life cycle. Secondly, we show that more extreme weather and floods associated with climate change, will exacerbate the spread of plastic in the natural environment. Finally, both issues occur throughout the marine environment, and we show that ecosystems and species can be particularly vulnerable to both, such as coral reefs that face disease spread through plastic pollution and climate-driven increased global bleaching events. A Web of Science search showed climate change and plastic pollution studies in the ocean are often siloed, with only 0.4% of the articles examining both stressors simultaneously. We also identified a lack of regional and industry-specific life cycle analysis data for comparisons in relative GHG contributions by materials and products. Overall, we suggest that rather than debate over the relative importance of climate change or marine plastic pollution, a more productive course would be to determine the linking factors between the two and identify solutions to combat both crises.


Subject(s)
Climate Change , Greenhouse Gases , Coral Reefs , Ecosystem , Plastics
11.
Biodivers Data J ; 9: e65970, 2021.
Article in English | MEDLINE | ID: mdl-34552373

ABSTRACT

BACKGROUND: During the 2019 First Descent: Seychelles Expedition, shallow and deep reef ecosystems of the Seychelles Outer Islands were studied by deploying a variety of underwater technologies to survey their benthic flora and fauna. Submersibles, remotely operated vehicles (ROVs) and SCUBA diving teams used stereo-video camera systems to record benthic communities during transect surveys conducted at 10 m, 30 m, 60 m, 120 m, 250 m and 350 m depths. In total, ~ 45 h of video footage was collected during benthic transect surveys, which was subsequently processed using annotation software in order to assess reef biodiversity and community composition. Here, we present a photographic guide for the visual identification of the marine macrophytes, corals, sponges and other common invertebrates that inhabit Seychelles' reefs. It is hoped that the resulting guide will aid marine biologists, conservationists, managers, divers and naturalists with the coarse identification of organisms as seen in underwater footage or live in the field. NEW INFORMATION: A total of 184 morphotypes (= morphologically similar individuals) were identified belonging to Octocorallia (47), Porifera (35), Scleractinia (32), Asteroidea (19), Echinoidea (10), Actiniaria (9), Chlorophyta (8), Antipatharia (6), Hydrozoa (6), Holothuroidea (5), Mollusca (2), Rhodophyta (2), Tracheophyta (2), Annelida (1), Crinoidea (1), Ctenophora (1), Ochrophyta (1) and Zoantharia (1). Out of these, we identified one to phylum level, eight to class, 14 to order, 27 to family, 110 to genus and 24 to species. This represents the first attempt to catalogue the benthic diversity from shallow reefs and up to 350 m depth in Seychelles.

12.
Biol Lett ; 17(4): 20200699, 2021 04.
Article in English | MEDLINE | ID: mdl-33849351

ABSTRACT

Inadequate and inequitable distribution of research capacity and resources limits both the opportunity for leadership and participation in science. It also results in biases of effort, poor and misinterpretation of global patterns and the availability of limited usable knowledge for current challenges. Increased participation in ocean research and decision-making is needed to account for many stressors and challenges. The current intergovernmental attention on the ocean (e.g. UN Decade of Ocean Science for Sustainable Development) and the development of technologies that permit exploration and accelerate exploitation suggest that it is timely to focus on the ocean and its stewardship. Employing the principles of co-development, co-production and co-dissemination, this paper uses a case study of a deep reef project in Seychelles to illustrate some activities that can be employed to magnify research outcomes and legacy. We provide examples that range from ministerial briefings and planning meetings to joint fieldwork, grant allocation and co-authoring outputs. These activities helped us to align priorities, promote authentic interactions and focus on equitable science. Finally, reflecting on our experiences, we acknowledge the benefits brought by respectful and long-term partnerships, the variety of activities needed to develop these and challenges of maintaining them. In the future, we also want to include more opportunities for regional peer-to-peer learning and technology transfer.


Subject(s)
Leadership , Seychelles
13.
Curr Biol ; 31(4): R184-R185, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33621503

ABSTRACT

Parachute science is the practice whereby international scientists, typically from higher-income countries, conduct field studies in another country, typically of lower income, and then complete the research in their home country without any further effective communication and engagement with others from that nation. It creates dependency on external expertise, does not address local research needs, and hinders local research efforts. As global hotspots of marine biodiversity, lower-income nations in the tropics have for too long been the subject of inequitable and unfair research practices1. However, to date there has been little quantifiable evidence of this phenomenon in marine science. Here, we provide evidence through systematic literature searches and queries that parachute science practices are still widespread in marine research and make some recommendations to help change the current status quo. VIDEO ABSTRACT.


Subject(s)
Developed Countries/economics , Developing Countries/economics , Marine Biology , Research Personnel , Research , Biodiversity , Income , Marine Biology/economics , Research/economics , Research Personnel/economics , Research Personnel/ethics
15.
R Soc Open Sci ; 6(9): 190958, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31598316

ABSTRACT

Worldwide coral reefs face catastrophic damage due to a series of anthropogenic stressors. Investigating how coral reefs ecosystems are connected, in particular across depth, will help us understand if deeper reefs harbour distinct communities. Here, we explore changes in benthic community structure across 15-300 m depths using technical divers and submersibles around Bermuda. We report high levels of floral and faunal differentiation across depth, with distinct assemblages occupying each depth surveyed, except 200-300 m, corresponding to the lower rariphotic zone. Community turnover was highest at the boundary depths of mesophotic coral ecosystems (30-150 m) driven largely by taxonomic turnover and to a lesser degree by ordered species loss (nestedness). Our work highlights the biologically unique nature of benthic communities in the mesophotic and rariphotic zones, and their limited connectivity to shallow reefs, thus emphasizing the need to manage and protect deeper reefs as distinct entities.

16.
Mar Environ Res ; 146: 1-11, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30879698

ABSTRACT

Zooplankton form a trophic link between primary producers and higher trophic levels, and exert significant influence on the vertical transport of carbon through the water column ('biological carbon pump'). Using a MultiNet we sampled and studied mesozooplankton communities (i.e. >0.2 mm) from six locations around Bermuda targeting four depth zones: ∼0-200 m, ∼200-400 m, ∼400-600 m (deep-scattering layer), and ∼600-800 m. Copepoda, our focal taxonomic group, consistently dominated samples (∼80% relative abundance). We report declines in zooplankton and copepod abundance with depth, concurrent with decreases in food availability. Taxonomic richness was lowest at depth and below the deep-scattering layer. In contrast, copepod diversity peaked at these depths, suggesting lower competitive displacement in these more food-limited waters. Finally, omnivory and carnivory, were the dominant trophic traits, each one affecting the biological carbon pump in a different way. This highlights the importance of incorporating data on zooplankton food web structure in future modelling of global ocean carbon cycling.


Subject(s)
Copepoda , Food Chain , Zooplankton , Animals , Bermuda , Biota , Carbon Cycle
17.
Evolution ; 73(4): 817-835, 2019 04.
Article in English | MEDLINE | ID: mdl-30854632

ABSTRACT

Diverging semi-isolated lineages either meet in narrow clinal hybrid zones, or have a mosaic distribution associated with environmental variation. Intrinsic reproductive isolation is often emphasized in the former and local adaptation in the latter, although both reduce gene flow between groups. Rarely are these two patterns of spatial distribution reported in the same study system. Here, we report that the long-snouted seahorse Hippocampus guttulatus is subdivided into discrete panmictic entities by both types of hybrid zones. Along the European Atlantic coasts, a northern and a southern lineage meet in the southwest of France where they coexist in sympatry-i.e., in the same geographical zone-with little hybridization. In the Mediterranean Sea, two lineages have a mosaic distribution, associated with lagoon-like and marine habitats. A fifth lineage was identified in the Black Sea. Genetic homogeneity over large spatial scales contrasts with isolation maintained in sympatry or close parapatry at a fine scale. A high variation in locus-specific introgression rates provides additional evidence that partial reproductive isolation must be maintaining the divergence. We find that fixed differences between lagoon and marine populations in the Mediterranean Sea belong to the most differentiated SNPs between the two Atlantic lineages, against the genome-wide pattern of structure that mostly follow geography. These parallel outlier SNPs cluster on a single chromosome-wide island of differentiation. Since Atlantic lineages do not map to lagoon-sea habitat variation, genetic parallelism at the genomic island suggests a shared genetic barrier contributes to reproductive isolation in contrasting contexts-i.e., spatial versus ecological. We discuss how a genomic hotspot of parallel differentiation could have evolved and become associated both with space and with a patchy environment in a single study system.


Subject(s)
Gene Flow , Genome , Hybridization, Genetic , Reproductive Isolation , Smegmamorpha/genetics , Animals , Biological Evolution , Europe
18.
Mar Pollut Bull ; 139: 100-104, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30686405

ABSTRACT

Research on marine microplastics continues to increase in popularity, with a large number of studies being published every year. However, with this plethora of research comes the need for a standardised approach to quantification and analysis procedures in order to produce comparative assessments. Using data collected from neuston nets in 2016, parameters for quantifying microplastics were compared. Surface area was the most accurate parameter to describe plastic size and should be used to describe plastic quantity (per km2 or m3), alongside abundance. Of the two most commonly used methods for calculating plastic concentration (flowmeter and ship's log), ship's log provided consistently smaller abundances, with the exception of one sample, calling for a standardisation in the techniques and measurements used to quantify floating microplastics.


Subject(s)
Environmental Monitoring/methods , Plastics/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Atlantic Ocean , Environmental Monitoring/standards , Environmental Monitoring/statistics & numerical data , Particle Size
19.
PLoS One ; 14(12): e0218904, 2019.
Article in English | MEDLINE | ID: mdl-31891586

ABSTRACT

Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem.


Subject(s)
Classification/methods , Image Processing, Computer-Assisted/standards , Marine Biology/standards , Animals , Artificial Intelligence , Biodiversity , Data Curation/methods , Data Curation/standards , Databases, Factual , Ecology , Ecosystem , Image Processing, Computer-Assisted/methods , Marine Biology/classification
20.
PLoS One ; 13(11): e0206220, 2018.
Article in English | MEDLINE | ID: mdl-30485275

ABSTRACT

The deep sea is the largest biome on earth, and microbes dominate in biomass and abundance. Anthropogenic litter is now almost ubiquitous in this biome, and its deposition creates new habitats and environments, including for microbial assemblages. With the ever increasing accumulation of this debris, it is timely to identify and describe the bacterial and archaeal communities that are able to form biofilms on macrodebris in the deep sea. Using 16S rRNA gene high throughput sequencing, we show for the first time the composition of bacteria and archaea on macrodebris collected from the deep sea. Our data suggest differences in the microbial assemblage composition across litter of different materials including metal, rubber, glass, fabric and plastic. These results imply that anthropogenic macrodebris provide diverse habitats for bacterial and archaeal biofilms and each may harbour distinct microbial communities.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Biodiversity , Human Activities , Waste Products , Atlantic Ocean , Biofilms , Geography , Geologic Sediments/microbiology , Humans , Phylogeny , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...