Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 12(1): 2184, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846316

ABSTRACT

Glioblastomas are hierarchically organised tumours driven by glioma stem cells that retain partial differentiation potential. Glioma stem cells are maintained in specialised microenvironments, but whether, or how, they undergo lineage progression outside of these niches remains unclear. Here we identify the white matter as a differentiative niche for glioblastomas with oligodendrocyte lineage competency. Tumour cells in contact with white matter acquire pre-oligodendrocyte fate, resulting in decreased proliferation and invasion. Differentiation is a response to white matter injury, which is caused by tumour infiltration itself in a tumoursuppressive feedback loop. Mechanistically, tumour cell differentiation is driven by selective white matter upregulation of SOX10, a master regulator of normal oligodendrogenesis. SOX10 overexpression or treatment with myelination-promoting agents that upregulate endogenous SOX10, mimic this response, leading to niche-independent pre-oligodendrocyte differentiation and tumour suppression in vivo. Thus, glioblastoma recapitulates an injury response and exploiting this latent programme may offer treatment opportunities for a subset of patients.


Subject(s)
Brain Neoplasms/pathology , Cell Differentiation , Glioblastoma/pathology , White Matter/pathology , Animals , Brain Neoplasms/ultrastructure , Cell Lineage , Cell Proliferation , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/ultrastructure , Mice, Inbred NOD , Mice, SCID , Myelin Sheath/metabolism , Oligodendroglia/pathology , SOXE Transcription Factors/metabolism , Transcriptome/genetics , Up-Regulation/genetics
3.
Mol Metab ; 20: 38-50, 2019 02.
Article in English | MEDLINE | ID: mdl-30553769

ABSTRACT

OBJECTIVE: Sympathetic nervous system and immune cell interactions play key roles in the regulation of metabolism. For example, recent convergent studies have shown that macrophages regulate obesity through brown adipose tissue (BAT) activation and beiging of white adipose tissue (WAT) via effects upon local catecholamine availability. However, these studies have raised issues about the underlying mechanisms involved including questions regarding the production of catecholamines by macrophages, the role of macrophage polarization state and the underlying intracellular signaling pathways in macrophages that might mediate these effects. METHODS: To address such issues we generated mice lacking Irs2, which mediates the effects of insulin and interleukin 4, specifically in LyzM expressing cells (Irs2LyzM-/- mice). RESULTS: These animals displayed obesity resistance and preservation of glucose homeostasis on high fat diet feeding due to increased energy expenditure via enhanced BAT activity and WAT beiging. Macrophages per se did not produce catecholamines but Irs2LyzM-/- mice displayed increased sympathetic nerve density and catecholamine availability in adipose tissue. Irs2-deficient macrophages displayed an anti-inflammatory transcriptional profile and alterations in genes involved in scavenging catecholamines and supporting increased sympathetic innervation. CONCLUSIONS: Our studies identify a critical macrophage signaling pathway involved in the regulation of adipose tissue sympathetic nerve function that, in turn, mediates key neuroimmune effects upon systemic metabolism. The insights gained may open therapeutic opportunities for the treatment of obesity.


Subject(s)
Adipose Tissue, Brown/metabolism , Insulin Receptor Substrate Proteins/genetics , Monocyte-Macrophage Precursor Cells/metabolism , Obesity/genetics , Sympathetic Nervous System/metabolism , Adipose Tissue, Brown/physiology , Animals , Catecholamines/metabolism , Cells, Cultured , Energy Metabolism , Gene Deletion , Insulin Receptor Substrate Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Sympathetic Nervous System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...