Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nutrients ; 15(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36839393

ABSTRACT

Food-derived bioactive peptides (BAPs) obtained from edible insect-protein hold multiple activities promising the potential to target complex pathological mechanisms responsible for chronic health conditions such as hypertension development. In this study, enzymatic protein hydrolysates from non-mulberry edible silkworm Antheraea assama (Muga) and Philosomia ricini (Eri) pupae, specifically Alcalase (A. assama) and Papain (P. ricini) hydrolysates obtained after 60 and 240 min, exhibited the highest ACE-inhibitory and antioxidant properties. The hydrolysates' fractions (<3, 3-10 and >10 kDa), specifically Alc_M60min_F3 (≤3 kDa) and Pap_E240min_F3 (≤3 kDa), showed the highest antioxidant and ACE-inhibitory activities, respectively. Further RP-HPLC purified sub-fractions F4 and F6 showed the highest ACE inhibition as well as potent anti-oxinflammatory activities in lipopolysaccharide (LPS)-treated endothelial cells. Indeed, F4 and F6 ACE-inhibitory peptide fractions were effective in preventing p65 nuclear translocation after 3 h of LPS stimulation along with the inhibition of p38 MAPK phosphorylation in HUVEC cells. In addition, pretreatment with F4 and F6 ACE-inhibitory peptide fractions significantly prevented the LPS-induced upregulation of COX-2 expression and IL-1ß secretion, while the expression of NRF2 (nuclear factor erythroid 2-related factor 2)-regulated enzymes such as HO-1 and NQO1 was induced by both peptide fractions. The derived peptides from edible pupae protein hydrolysates have potentialities to be explored as nutritional approaches against hypertension and related cardiovascular diseases.


Subject(s)
Bombyx , Hypertension , Animals , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antioxidants/pharmacology , Protein Hydrolysates/pharmacology , Pupa , Endothelial Cells , Lipopolysaccharides , Peptides/pharmacology , Hydrolysis
2.
Redox Biol ; 41: 101952, 2021 05.
Article in English | MEDLINE | ID: mdl-33839421

ABSTRACT

Ozone (O3) exposure has been reported to contribute to various cutaneous inflammatory conditions, such as eczema, psoriasis, rush etc. via a redox-inflammatory pathway. O3 is too reactive to penetrate cutaneous tissue; it interacts with lipids present in the outermost layer of skin, resulting in formation of oxidized molecules and hydrogen peroxide (H2O2). Interestingly, several inflammatory skin pathologies demonstrate altered levels of antimicrobial peptides (AMPs). These small, cationic peptides are found in various cells, including keratinocytes, eccrine gland cells, and seboctyes. Classically, AMPs function as antimicrobial agents. Recent studies indicate that AMPs also play roles in inflammation, angiogenesis, and wound healing. Since altered levels of AMPs have been detected in pollution-associated skin pathologies, we hypothesized that exposure to O3 could affect the levels of AMPs in the skin. We examined levels of AMPs using qRT-PCR, Western blotting, and immunofluorescence in vitro (human keratinocytes), ex vivo (human skin explants), and in vivo (human volunteer subjects exposed to O3) and observed increased levels of all the measured AMPs upon O3 exposure. In addition, in vitro studies have confirmed the redox regulation of AMPs in keratinocytes. This novel finding suggests that targeting AMPs could be a possible defensive strategy to combat pollution-associated skin conditions.


Subject(s)
Hydrogen Peroxide , Skin Diseases , Humans , Keratinocytes , Pore Forming Cytotoxic Proteins , Skin
3.
Plast Reconstr Surg ; 147(1S-2): 15S-24S, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33347070

ABSTRACT

SUMMARY: Exposure to air pollutants has been now associated with detrimental effects on a variety of organs, including the heart, lungs, GI tract, and brain. However, recently it has become clear that pollutant exposure can also promote the development/exacerbation of a variety of skin conditions, including premature aging, psoriasis, acne, and atopic dermatitis. Although the molecular mechanisms by which pollutant exposure results in these cutaneous pathological manifestations, it has been noticed that an inflammatory status is a common denominator of all those skin conditions. For this reason, recently, the activation of a cytosolic multiprotein complex involved in inflammatory responses (the inflammasome) that could promote the maturation of proinflammatory cytokines interleukin-1ß and interleukin-18 has been hypothesized to play a key role in pollution-induced skin damage. In this review, we summarize and propose the cutaneous inflammasome as a novel target of pollutant exposure and the eventual usage of inflammasome inhibitor as new technologies to counteract pollution-induced skin damage. Possibly, the ability to inhibit the inflammasome activation could prevent cutaneous inflammaging and ameliorate the health and appearance of the skin.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Dermatitis/immunology , Inflammasomes/immunology , Skin/pathology , Animals , Dermatitis/pathology , Dermatitis/prevention & control , Disease Models, Animal , Environmental Exposure/adverse effects , Furans , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Humans , Indenes , Inflammasomes/antagonists & inhibitors , Inflammasomes/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nitriles/pharmacology , Nitriles/therapeutic use , Skin/drug effects , Skin/immunology , Skin Aging/immunology , Sulfonamides , Sulfones/pharmacology , Sulfones/therapeutic use
4.
Toxicol Lett ; 338: 40-50, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33279629

ABSTRACT

Air pollution represents one of the main risks for both environment and human health. The rapid urbanization has been leading to a continuous release of harmful manmade substances into the atmosphere which are associated to the exacerbation of several pathologies. The skin is the main barrier of our body against the external environment and it is the main target for the outdoor stressors. Among the pollutants, Ozone (O3) is one of the most toxic, able to initiate oxidative reactions and activate inflammatory response, leading to the onset of several skin conditions. Moreover, skin is daily subjected to the activity of Ultraviolet Radiation which are well known to induce harmful cutaneous effects including skin aging and sunburn. Even though both UV and O3 are able to affect the skin homeostasis, very few studies have investigated their possible additive effect. Therefore, in this study we evaluated the effect of the combined exposure of O3 and UV in inducing skin damage, by exposing human skin explants to UV alone or in combination with O3 for 4-days. Markers related to inflammation, redox homeostasis and tissue structure were analyzed. Our results demonstrated that O3 is able to amplify the UV induced skin oxinflammation markers.


Subject(s)
Ozone/toxicity , Skin/drug effects , Skin/radiation effects , Ultraviolet Rays/adverse effects , Filaggrin Proteins , Humans , Inflammation Mediators/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Skin/metabolism , Skin/pathology , Tight Junction Proteins/metabolism , Tissue Culture Techniques
5.
Ann N Y Acad Sci ; 1486(1): 15-38, 2021 02.
Article in English | MEDLINE | ID: mdl-33022781

ABSTRACT

Exposure to air pollutants has been previously associated with respiratory viral infections, including influenza, measles, mumps, rhinovirus, and respiratory syncytial virus. Epidemiological studies have also suggested that air pollution exposure is associated with increased cases of SARS-CoV-2 infection and COVID-19-associated mortality, although the molecular mechanisms by which pollutant exposure affects viral infection and pathogenesis of COVID-19 remain unknown. In this review, we suggest potential molecular mechanisms that could account for this association. We have focused on the potential effect of exposure to nitrogen dioxide (NO2 ), ozone (O3 ), and particulate matter (PM) since there are studies investigating how exposure to these pollutants affects the life cycle of other viruses. We have concluded that pollutant exposure may affect different stages of the viral life cycle, including inhibition of mucociliary clearance, alteration of viral receptors and proteases required for entry, changes to antiviral interferon production and viral replication, changes in viral assembly mediated by autophagy, prevention of uptake by macrophages, and promotion of viral spread by increasing epithelial permeability. We believe that exposure to pollutants skews adaptive immune responses toward bacterial/allergic immune responses, as opposed to antiviral responses. Exposure to air pollutants could also predispose exposed populations toward developing COIVD-19-associated immunopathology, enhancing virus-induced tissue inflammation and damage.


Subject(s)
Air Pollution/adverse effects , COVID-19/etiology , Pandemics , SARS-CoV-2 , Adaptive Immunity , Air Pollutants/adverse effects , COVID-19/immunology , COVID-19/virology , Host Microbial Interactions , Humans , Immunity, Innate , Models, Biological , Particulate Matter/adverse effects , Receptors, Virus/physiology , Respiratory System/physiopathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Toll-Like Receptors/physiology , Virus Internalization , Virus Replication
6.
Int J Sport Nutr Exerc Metab ; 30(6): 396-404, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32932235

ABSTRACT

Inflammasomes are multiprotein signaling platforms of the innate immune system that detect markers of physiological stress and promote the maturation of caspase-1 and interleukin 1 beta (IL-1ß), IL-18, and gasdermin D. This randomized, cross-over trial investigated the influence of 2-week mixed flavonoid (FLAV) versus placebo (PL) supplementation on inflammasome activation and IL-1ß and IL-18 production after 75-km cycling in 22 cyclists (42 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr postexercise (176 ± 5.4 min, 73.4 ± 2.0 %VO2max). The supplement (678 mg FLAVs) included quercetin, green tea catechins, and bilberry anthocyanins. The pattern of change in the plasma levels of the inflammasome adaptor oligomer ASC (apoptosis-associated speck-like protein containing caspase recruitment domain) was different between the FLAV and PL trials, with the FLAV ASC levels 52% lower (Cohen's d = 1.06) than PL immediately following 75-km cycling (interaction effect, p = .012). The plasma IL-1ß levels in FLAV were significantly lower than PL (23-42%; Cohen's d = 0.293-0.644) throughout 21 hr of recovery (interaction effect, p = .004). The change in plasma gasdermin D levels were lower immediately postexercise in FLAV versus PL (15% contrast, p = .023; Cohen's d = 0.450). The patterns of change in plasma IL-18 and IL-37 did not differ between the FLAV and PL trials (interaction effects, p = .388, .716, respectively). These data indicate that 2-week FLAV ingestion mitigated inflammasome activation, with a corresponding decrease in IL-1ß release in cyclists after a 75-km cycling time trial. The data from this study support the strategy of ingesting high amounts of FLAV to mitigate postexercise inflammation.

7.
Oxid Med Cell Longev ; 2020: 9571490, 2020.
Article in English | MEDLINE | ID: mdl-32855770

ABSTRACT

The World Health Organization estimates that 7 million people die every year due to pollution exposure. Among the different pollutants to which living organism are exposed, ozone (O3) represents one of the most toxic, because its location which is the skin is one of the direct tissues exposed to the outdoor environment. Chronic exposure to outdoor stressors can alter cutaneous redox state resulting in the activation of inflammatory pathways. Recently, a new player in the inflammation mechanism was discovered: the multiprotein complex NLRP1 inflammasome, which has been shown to be also expressed in the skin. The topical application of natural compounds has been studied for the last 40 years as a possible approach to prevent and eventually cure skin conditions. Recently, the possibility to use blueberry (BB) extract to prevent pollution-induced skin toxicity has been of great interest in the cosmeceutical industry. In the present study, we analyzed the cutaneous protective effect of BB extract in several skin models (2D, 3D, and human skin explants). Specifically, we observed that in the different skin models used, BB extracts were able to enhance keratinocyte wound closure and normalize proliferation and migration responses previously altered by O3. In addition, pretreatment with BB extracts was able to prevent ozone-induced ROS production and inflammasome activation measured as NRLP1-ASC scaffold formation and also prevent the transcripts of key inflammasome players such as CASP1 and IL-18, suggesting that this approach as a possible new technology to prevent cutaneous pollution damage. Our data support the hypothesis that BB extracts can effectively reduce skin inflammation and be a possible new technology against cutaneous pollution-induced damage.


Subject(s)
Blueberry Plants/chemistry , Inflammasomes/metabolism , Ozone/toxicity , Plant Extracts/pharmacology , Skin/pathology , Biopsy , Cell Death/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , HaCaT Cells , Humans , Hydrogen Peroxide/metabolism , Keratinocytes/drug effects , Keratinocytes/pathology , Models, Biological , Oxidative Stress/drug effects , Protein Multimerization/drug effects , Skin/drug effects
8.
Arch Biochem Biophys ; 691: 108483, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32735866

ABSTRACT

Krev interaction trapped protein 1 (KRIT1) is a scaffold protein known to form functional complexes with distinct proteins, including Malcavernin, PDCD10, Rap1 and others. It appears involved in several cellular signaling pathways and exerts a protective role against inflammation and oxidative stress. KRIT1 has been studied as a regulator of endothelial cell functions and represents a determinant in the pathogenesis of Cerebral Cavernous Malformation (CCM), a cerebrovascular disease characterized by the formation of clusters of abnormally dilated and leaky blood capillaries, which predispose to seizures, neurological deficits and intracerebral hemorrhage. Although KRIT1 is ubiquitously expressed, few studies have described its involvement in pathologies other than CCM including cancer. Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic propensity. Despite the numerous efforts made to define the signaling pathways activated during melanoma progression, the molecular mechanisms at the basis of melanoma growth, phenotype plasticity and resistance to therapies are still under investigation.


Subject(s)
KRIT1 Protein/metabolism , Melanoma/metabolism , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Cell Movement/physiology , Cell Nucleus/metabolism , Cell Proliferation/genetics , Down-Regulation , Female , Gene Knockdown Techniques/methods , Humans , KRIT1 Protein/genetics , Male , Melanocytes/metabolism , Melanoma/pathology , Middle Aged , beta Catenin/metabolism
9.
Arch Biochem Biophys ; 690: 108416, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32502471

ABSTRACT

Alkaptonuria (AKU) is a rare metabolic disease correlated with the deficiency of homogentisate 1,2-dioxygenase and leading to an accumulation of the metabolite homogentisic acid (HGA) which can be subjected to oxidation and polymerization reactions. These events are considered a trigger for the induction of oxidative stress in AKU but, despite the large description of an altered redox status, the underlying pathogenetic processes are still unstudied. In the present study, we investigated the molecular mechanisms responsible for the oxidative damage present in an osteoblast-based cellular model of AKU. Bone, in fact, is largely affected in AKU patients: severe osteoclastic resorption, osteoporosis, even for pediatric cases, and an altered rate of remodeling biomarkers have been reported. In our AKU osteoblast cell model, we found a clear altered redox homeostasis, determined by elevated hydrogen peroxide (H2O2) levels and 4HNE protein adducts formation. These findings were correlated with increased NADPH oxidase (NOX) activity and altered mitochondrial respiration. In addition, we observed a decreased activity of superoxide dismutase (SOD) and reduced levels of thioredoxin (TRX) that parallel the decreased Nrf2-DNA binding. Overall, our results reveal that HGA is able to alter the cellular redox homeostasis by modulating the endogenous ROS production via NOX activation and mitochondrial dysfunctions and impair the cellular response mechanism. These findings can be useful for understanding the pathophysiology of AKU, not yet well studied in bones, but which is an important source of comorbidities that affect the life quality of the patients.


Subject(s)
Alkaptonuria/metabolism , Homeostasis/physiology , Cell Line , DNA-Binding Proteins/metabolism , Homogentisic Acid/metabolism , Humans , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , NADPH Oxidases/metabolism , NF-E2-Related Factor 2/metabolism , Osteoblasts/cytology , Oxidation-Reduction , Oxidative Stress/physiology , Signal Transduction , Superoxide Dismutase/metabolism , Thioredoxins/metabolism
10.
Environ Sci Pollut Res Int ; 27(25): 31841-31853, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32504424

ABSTRACT

The lungs are one the main organs exposed to environmental pollutants, such as tropospheric ozone (O3) and particulate matter (PM), which induce lung pathologies through similar mechanisms, resulting in altered redox homeostasis and inflammation. Although numerous studies have investigated the effects of these pollutants in the respiratory tract, there are only a few evidences that have evaluated the combined effects of outdoor stressors, despite the fact that humans are consistently exposed to more pollutants simultaneously. In this study, we wanted to investigate whether exposure to PM and O3 could have an additive, noxious effect in lung epithelial cells by measuring oxidative damage and the activity of redox-sensitive nuclear factor erythroid 2-related factor 2 (Nrf2) which is a master regulator of cellular antioxidant defenses. First, we measured the cytotoxic effects of O3 and PM individually and in combination. We observed that both pollutants alone increased LDH release 24 h post-exposure. Interestingly, we did observe via TEM that combined exposure to O3 and PM resulted in increased cellular penetration of PM particles. Furthermore, we found that levels of 4-hydroxy-nonenal (4HNE), a marker of oxidative damage, significantly increased 24 h post-exposure, in response to the combined pollutants. In addition, we observed increased levels of Nrf2, in response to the combined pollutants vs. either pollutant, although this effect was not followed by the increase in Nrf2-responsive genes expression HO1, SOD1, GPX, or GR nor enzymatic activity. Despite these observations, our study suggests that O3 exposure facilitate the cellular penetration of the particles leading to an increased oxidative damage, and additive defensive response.


Subject(s)
Air Pollutants/analysis , NF-E2-Related Factor 2 , Epithelial Cells/drug effects , Humans , Oxidation-Reduction , Oxidative Stress , Particulate Matter/analysis
11.
Antioxid Redox Signal ; 33(4): 308-326, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32443938

ABSTRACT

Significance: Oxidative stress and oxidative damage are central hypothetical mechanisms for the adverse effects of airborne particulate matter (PM). Activation of inflammatory cells capable of generating reactive oxygen and nitrogen species is another proposed damage pathway. Understanding the interplay between these responses can help us understand the adverse health effects attributed to breathing polluted air. Recent Advances: The consequences of PM exposure on different organs are oxidative damage, decreased function, and inflammation, which can lead to the development/exacerbation of proinflammatory disorders. Mitochondrial damage is also an important event in PM-induced cytotoxicity. Critical Issues: Reactive oxygen species (ROS) are generated during phagocytosis of the particles, leading to enhancement of oxidative stress and triggering the inflammatory response. The activation of inflammatory signaling pathways results in the release of cytokines and other mediators, which can further induce ROS production by activating endogenous enzymes, leading to a positive feedback loop, which can aggravate the effects triggered by PM exposure. Future Directions: Further research is required to elucidate the exact mechanisms by which PM exposure results in adverse health effects, in terms of the relationship between the redox responses triggered by the presence of the particles and the inflammation observed in the different organs, so the development/exacerbation of PM-associated health problems can be prevented.


Subject(s)
Disease Susceptibility , Inflammation/etiology , Inflammation/metabolism , Oxidation-Reduction , Oxidative Stress , Particulate Matter/adverse effects , Air Pollution/adverse effects , Animals , Cytokines/metabolism , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Reactive Oxygen Species/metabolism
12.
Article in English | MEDLINE | ID: mdl-32384765

ABSTRACT

(1) Background: The gastrointestinal tract (GI) tract is one of the main organs exposed to particulate matter (PM) directly through ingestion of contaminated food or indirectly through inhalation. Previous studies have investigated the effects of chronic PM exposure on intestinal epithelia in vitro using Caco-2 cells and in vivo using mice. In this study, we hypothesized that chronic PM exposure would increase epithelial permeability and decrease barrier function due to altered redox homeostasis, which alters levels and/or localization of barrier-associated proteins in human three-dimensional (3D) intestinal tissues. (2) Methods: Transepithelial electrical resistance (TEER) in tissues exposed to 50, 100, 150, 250, and 500 µg/cm2 of PM for 1 week and 2 weeks was analyzed. Levels and localization of tight junction proteins zonula occludens protein 1 (ZO-1) and claudin-1 and desmosome-associated desmocollin were analyzed using immunofluorescence. As a marker of oxidative stress, levels of 4-hydroxy-nonenal (4HNE) adducts were measured. (3) Results: No differences in TEER measurements were observed between exposed and un-exposed tissues. However, increased levels of 4HNE adducts in exposed tissues were observed. Additionally, decreased levels of ZO-1, claudin-1, and desmocollin were demonstrated. (4) Conclusion: These data suggest that chronic PM exposure results in an increase of oxidative stress; modified levels of barrier-associated proteins could possibly link to GI tract inflammatory conditions.


Subject(s)
Caco-2 Cells , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Intestinal Mucosa/metabolism , Particulate Matter/pharmacology , Tight Junctions/metabolism , Animals , Caco-2 Cells/drug effects , Caco-2 Cells/physiology , Humans , Intestines/physiopathology , Membrane Proteins/metabolism , Mice , Oxidation-Reduction , Particulate Matter/administration & dosage , Tight Junction Proteins
13.
Redox Biol ; 34: 101481, 2020 07.
Article in English | MEDLINE | ID: mdl-32336667

ABSTRACT

Since the skin is one of the targets of the harmful effects of environmental insults, several studies have investigated the effects of outdoor stressors on cutaneous tissue. Ozone (O3), particulate matter (PM), and ultraviolet radiation (UV) have all been shown to induce skin damage through disruption of tissue redox homeostasis, resulting in the so called "OxInflammation" condition. However, few studies have explored whether these stressors can act synergistically in cutaneous tissues. In the present work, we evaluated whether O3, PM, and UV, which are the most common environmental skin insults, act synergistically in inducing skin damage, and whether this effect could be prevented through topical application of a cosmeceutical formulation mixture (CF Mix) containing 15% vitamin C (l-ascorbic acid), 1% vitamin E (α-tocopherol), and 0.5% ferulic acid. Human skin explants obtained from three different subjects were sequentially exposed to 200 mJ UV light, 0.25 ppm O3 for 2 h, and 30 min of diesel engine exhaust (DEE), alone or in combination for 4 days (time point D1 and D4). We observed a clear additive effect of O3 and DEE in combination with UV in increasing levels of several oxidative (4HNE, HO-1) and inflammatory (COX2, NF-κB) markers and loss of barrier-associated proteins, such as filaggrin and involucrin. Furthermore, daily topical pre-treatment with the CF Mix prevented upregulation of the inflammatory and oxidative markers and the loss of both involucrin and filaggrin. In conclusion, this study is the first to investigate the combined effects of three of the most harmful outdoor stressors on human skin and suggests that daily topical application may prevent pollution-induced skin damage.


Subject(s)
Cosmeceuticals , Environmental Pollutants , Cosmeceuticals/metabolism , Environmental Pollutants/metabolism , Filaggrin Proteins , Humans , Oxidation-Reduction , Skin/metabolism , Ultraviolet Rays/adverse effects
14.
Arch Biochem Biophys ; 685: 108355, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32268137

ABSTRACT

Psoriasis is a skin disease characterized by abnormal keratinocyte proliferation and inflammation. Currently, there are no cures for this disease, so the goal of treatment is to decrease inflammation and slow down the associated rapid cell growth and shedding. Recent advances have led to the usage of phosphodiesterase 4 (PDE4) inhibitors for treatment of this condition. For example, apremilast is an oral, selective PDE4 inhibitor that is able to reduce skin inflammation and is Food and Drug Administration (FDA)-approved to treat adults with moderate to severe psoriasis and/or psoriatic arthritis. However, common target-related adverse events, including diarrhea, nausea, headache, and insomnia limit the usage of this drug. To circumvent these effects, the usage of PDE4 inhibitors specifically designed for topical treatment, such as CHF6001, may combine local anti-inflammatory activity with limited systemic exposure, improving tolerability. In this study, we showed that CHF6001, currently undergoing clinical development for COPD, suppresses human keratinocyte proliferation as assessed via BrdU incorporation. We also observed decreased re-epithelialization in a scratch-wound model after CHF6001 treatment. At the molecular level, CHF6001 inhibited translocation of phosphorylated NF-κB subunit p65, promoting loss of nuclear cyclin D1 accumulation and an increase of cell cycle inhibitor p21. Furthermore, CHF6001 decreased oxidative stress, measured by assessing lipid peroxidation (4-HNE adduct formation), through the inactivation of the NADPH oxidase. These results suggest that CHF6001 has the potential to treat skin disorders associated with hyperproliferative keratinocytes, such as psoriasis by targeting oxidative stress, abnormal re-epithelization, and inflammation.


Subject(s)
Cell Proliferation/drug effects , Keratinocytes/drug effects , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Phosphodiesterase 4 Inhibitors/pharmacology , Sulfonamides/pharmacology , para-Aminobenzoates/pharmacology , Aldehydes/metabolism , Cell Line , Cell Survival/drug effects , Cyclin D1/metabolism , Humans , NADPH Oxidases/metabolism , Phosphodiesterase 4 Inhibitors/toxicity , Psoriasis/drug therapy , Sulfonamides/toxicity , Transcription Factor RelA/metabolism , para-Aminobenzoates/toxicity
15.
FASEB J ; 34(5): 6521-6538, 2020 05.
Article in English | MEDLINE | ID: mdl-32246805

ABSTRACT

Autism spectrum disorder (ASD) has been hypothesized to be a result of the interplay between genetic predisposition and increased vulnerability to early environmental insults. Mitochondrial dysfunctions appear also involved in ASD pathophysiology, but the mechanisms by which such alterations develop are not completely understood. Here, we analyzed ASD primary fibroblasts by measuring mitochondrial bioenergetics, ultrastructural and dynamic parameters to investigate the hypothesis that defects in these pathways could be interconnected phenomena responsible or consequence for the redox imbalance observed in ASD. High levels of 4-hydroxynonenal protein adducts together with increased NADPH (nicotinamide adenine dinucleotide phosphateoxidase) activity and mitochondrial superoxide production coupled with a compromised antioxidant response guided by a defective Nuclear Factor Erythroid 2-Related Factor 2 pathway confirmed an unbalanced redox homeostasis in ASD. Moreover, ASD fibroblasts showed overactive mitochondrial bioenergetics associated with atypical morphology and altered expression of mitochondrial electron transport chain complexes and dynamics-regulating factors. We suggest that many of the changes observed in mitochondria could represent compensatory mechanisms by which ASD cells try to adapt to altered energy demand, possibly resulting from a chronic oxinflammatory status.


Subject(s)
Autism Spectrum Disorder/pathology , Energy Metabolism , Fibroblasts/pathology , Mitochondria/pathology , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Oxidative Stress , Adolescent , Adult , Autism Spectrum Disorder/metabolism , Case-Control Studies , Child , Female , Fibroblasts/metabolism , Humans , Male , Mitochondria/metabolism , Young Adult
16.
Annu Rev Food Sci Technol ; 11: 235-254, 2020 03 25.
Article in English | MEDLINE | ID: mdl-31905017

ABSTRACT

The skin is the main interface between the body and the environment, providing a biological barrier against an array of chemical and physical pollutants (e.g., ultraviolet light, ozone, etc.). Exposure of the skin to these outdoor stressors generates reactive oxygen species (ROS), which can overwhelm the skin's endogenous defense systems (e.g., catalase, vitamins C and E, etc.), resulting in premature skin aging due to the induction of DNA damage, mitochondrial damage, lipid peroxidation, activation of inflammatory signaling pathways, and formation of protein adducts. In this review, we discuss how topical application of antioxidants, including vitamins C and E, carotenoids, resveratrol, and pycnogenol, can be combined with dietary supplementation of these antioxidant compounds in addition to probiotics and essential minerals to protect against outdoor stressor-induced skin damage, including the damage associated with aging.


Subject(s)
Skin Physiological Phenomena , Antioxidants/metabolism , Humans , Reactive Oxygen Species/metabolism
17.
Int J Sport Nutr Exerc Metab ; 30(2): 112­119, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31754080

ABSTRACT

This double-blinded, placebo controlled, randomized crossover trial investigated the influence of 2-week mixed flavonoid versus placebo supplementation on oxinflammation markers after a 75-km cycling time trial in 22 cyclists (42.3 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr post 75-km cycling (176 ± 5.4 min, 73.4 ±2.0% maximal oxygen consumption). The supplement provided 678-mg flavonoids with quercetin (200 mg), green tea catechins (368 mg, 180-mg epigallocatechin gallate), and anthocyanins (128 mg) from bilberry extract, with caffeine, vitamin C, and omega-3 fatty acids added as adjuvants. Blood samples were analyzed for blood leukocyte counts, oxinflammation biomarkers, including 4-hydroxynonenal, protein carbonyls, and peripheral blood mononuclear mRNA expression for cyclooxygenease-2 and glutathione peroxidase. Each of the blood biomarkers was elevated postexercise (time effects, all ps < .01), with lower plasma levels for 4-hydroxynonenal (at 21-hr postexercise) in flavonoid versus placebo (interaction effect, p = .008). Although elevated postexercise, no trial differences for the neutrophil/lymphocyte ratio (p = .539) or peripheral blood mononuclear mRNA expression for cyclooxygenease-2 (p = .322) or glutathione peroxidase (p = .839) were shown. Flavonoid supplementation prior to intensive exercise decreased plasma peroxidation and oxidative damage, as determined by 4-hydroxynonenal. Postexercise increases were similar between the flavonoid and placebo trials for peripheral blood mononuclear mRNA expression for cyclooxygenease-2 and the nuclear factor erythroid 2-related factor 2 related gene glutathione peroxidase (NFE2L2). The data support the strategy of flavonoid supplementation to mitigate postexercise oxidative stress in endurance athletes.

18.
Chemosphere ; 240: 124746, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31568946

ABSTRACT

The skin is one of the main organs exposed to airborne particulate matter (PM), which may contain various pollutants linked to a wide range of adverse health endpoints. In the present work, we analyzed the proinflammatory and oxidative effects of some PM components leading to inflammatory responses, cell proliferation or cell death. We investigated four redox-active chemicals, such as Cu (II) metal and quinones generated from polycyclic aromatic hydrocarbons (PAHs), i.e., 9,10 phenanthrenequinone and isomers 1,2 and 1,4 naphthoquinone. We performed in vitro biological tests on human keratinocyte (HaCaT) cells and also acellular assays based on the oxidation of dithiothreitol and ascorbic acid, antioxidants to assess the oxidative potential (OP). We found that treated keratinocytes showed increased activation of the redox-sensitive transcription factor NFκB and increased transcript levels of the NFκB-dependent gene IL8. Moreover, the treatment with Cu(II) and quinones increased the activities and the expression of genes involved in the redox response, SOD1 and GPX, suggesting that PM components induced cellular damage due to redox imbalances. Finally, we found alteration of the mitochondrial ultrastructure and increased apoptosis after 24 h of treatment. The results presented suggest that all of the analyzed pollutant components are able to modulate similar signal transduction pathways, resulting in activation of inflammatory processes in the skin, followed by oxidative damage. Altogether these observations indicate that exposure of skin to air pollutants modifies the redox equilibrium of keratinocytes, which could explain the increased skin damage observed in populations that live in high-pollution cities.


Subject(s)
Air Pollutants/toxicity , Keratinocytes/drug effects , Oxidative Stress/physiology , Particulate Matter/toxicity , Air Pollutants/analysis , Antioxidants/metabolism , Humans , Metals/analysis , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Quinones/metabolism , Signal Transduction/drug effects , Skin/drug effects
19.
Free Radic Biol Med ; 152: 561-570, 2020 05 20.
Article in English | MEDLINE | ID: mdl-31778733

ABSTRACT

Several pollutants have been shown to affect skin physiology, among which ozone (O3) is one of the most toxic. Prolonged exposure to O3 leads to increased oxidative damage and cutaneous inflammation. The correlation between O3 exposure and inflammatory cutaneous conditions (atopic dermatitis, psoriasis, acne and eczema) has been already suggested, although the mechanism involved is still unclear. In the last few decades, a new multiprotein complex, the inflammasome, has been discovered and linked to tissue inflammation, including inflammatory skin conditions. The inflammasome activates inflammatory responses and contributes to the maturation of cytokines such as interleukin 1ß (IL-1ß) and interleukin 18. This complex is also responsive to reactive oxygen species (ROS), which plays a role in triggering the activation of the complex. On this basis it is possible hypothesize that the activation of the inflammasome could be the link between the inflammatory skin conditions associated to O3 exposure. In the present work, the ability of O3 to induce inflammasome activation was determined in different skin models, ranging from 2D (human keratinocytes) to 3D models in vitro and ex vivo. Results clearly showed that O3 exposure increased both transcript and protein levels of the main inflammasome complex, such as ASC and caspase-1. Furthermore, by using both immunofluorescence and an ASC oligomerization assay the formation of the complex was determined together with increased secreted levels of both IL-18 and IL-1ß. Of note is that H2O2 and to a less extent 4HNE (both considered the main mediators of O3 interaction with cellular membranes) were also able to activate skin inflammasome while the use of catalase prevents the activation. This study demonstrated that O3 can activate cutaneous inflammasome in a redox dependent manner suggesting a possible role of this new pathway in pollution induced inflammatory skin conditions.


Subject(s)
Inflammasomes , Ozone , Caspase 1/metabolism , Humans , Hydrogen Peroxide , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidation-Reduction , Ozone/toxicity , Reactive Oxygen Species
20.
J Virol ; 94(2)2020 01 06.
Article in English | MEDLINE | ID: mdl-31666385

ABSTRACT

Human papillomaviruses (HPVs) infect keratinocytes of stratified epithelia. Long-term persistence of infection is a critical risk factor for the development of HPV-induced malignancies. Through the actions of its oncogenes, HPV evades host immune responses to facilitate its productive life cycle. In this work, we discovered a previously unknown function of the HPV16 E5 oncoprotein in the suppression of interferon (IFN) responses. This suppression is focused on keratinocyte-specific IFN-κ and is mediated through E5-induced changes in growth factor signaling pathways, as identified through phosphoproteomics analysis. The loss of E5 in keratinocytes maintaining the complete HPV16 genome results in the derepression of IFNK transcription and subsequent JAK/STAT-dependent upregulation of several IFN-stimulated genes (ISGs) at both the mRNA and protein levels. We also established a link between the loss of E5 and the subsequent loss of genome maintenance and stability, resulting in increased genome integration.IMPORTANCE Persistent human papillomavirus infections can cause a variety of significant cancers. The ability of HPV to persist depends on evasion of the host immune system. In this study, we show that the HPV16 E5 protein can suppress an important aspect of the host immune response. In addition, we find that the E5 protein is important for helping the virus avoid integration into the host genome, which is a frequent step along the pathway to cancer development.


Subject(s)
Genome, Viral , Human papillomavirus 16/metabolism , Interferon Type I/metabolism , Keratinocytes , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections , Plasmids/metabolism , Signal Transduction , Cell Line , Genomic Instability , Human papillomavirus 16/genetics , Humans , Interferon Type I/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Keratinocytes/virology , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/genetics , Papillomavirus Infections/metabolism , Papillomavirus Infections/pathology , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...