Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 27(5): 624-637, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28238662

ABSTRACT

The individual molecular pathways downstream of Cdc42, Rac, and Rho GTPases are well documented, but we know surprisingly little about how these pathways are coordinated when cells move in a complex environment in vivo. In the developing embryo, melanoblasts originating from the neural crest must traverse the dermis to reach the epidermis of the skin and hair follicles. We previously established that Rac1 signals via Scar/WAVE and Arp2/3 to effect pseudopod extension and migration of melanoblasts in skin. Here we show that RhoA is redundant in the melanocyte lineage but that Cdc42 coordinates multiple motility systems independent of Rac1. Similar to Rac1 knockouts, Cdc42 null mice displayed a severe loss of pigmentation, and melanoblasts showed cell-cycle progression, migration, and cytokinesis defects. However, unlike Rac1 knockouts, Cdc42 null melanoblasts were elongated and displayed large, bulky pseudopods with dynamic actin bursts. Despite assuming an elongated shape usually associated with fast mesenchymal motility, Cdc42 knockout melanoblasts migrated slowly and inefficiently in the epidermis, with nearly static pseudopods. Although much of the basic actin machinery was intact, Cdc42 null cells lacked the ability to polarize their Golgi and coordinate motility systems for efficient movement. Loss of Cdc42 de-coupled three main systems: actin assembly via the formin FMNL2 and Arp2/3, active myosin-II localization, and integrin-based adhesion dynamics.


Subject(s)
Actins/metabolism , Cell Adhesion , Cell Movement , Melanocytes/metabolism , cdc42 GTP-Binding Protein/genetics , Animals , Cell Lineage , Mice/embryology , Neuropeptides/genetics , Neuropeptides/metabolism , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
2.
Pigment Cell Melanoma Res ; 29(5): 559-71, 2016 09.
Article in English | MEDLINE | ID: mdl-27390154

ABSTRACT

The five-subunit WASH complex generates actin networks that participate in endocytic trafficking, migration and invasion in various cell types. Loss of one of the two subunits WASH or strumpellin in mice is lethal, but little is known about their role in mammals in vivo. We explored the role of strumpellin, which has previously been linked to hereditary spastic paraplegia, in the mouse melanocytic lineage. Strumpellin knockout in melanocytes revealed abnormal endocytic vesicle morphology but no impairment of migration in vitro or in vivo and no change in coat colour. Unexpectedly, WASH and filamentous actin could still localize to vesicles in the absence of strumpellin, although the shape and size of vesicles was altered. Blue native PAGE revealed the presence of two distinct WASH complexes, even in strumpellin knockout cells, revealing that the WASH complex can assemble and localize to endocytic compartments in cells in the absence of strumpellin.


Subject(s)
Cell Lineage/genetics , Hair Color/physiology , Melanocytes/metabolism , Microfilament Proteins/metabolism , Proteins/physiology , Vesicular Transport Proteins/metabolism , Actin Cytoskeleton/metabolism , Animals , Cell Movement/physiology , Cells, Cultured , Female , Male , Melanocytes/pathology , Mice , Mice, Knockout
3.
Curr Opin Cell Biol ; 30: 25-32, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24953729

ABSTRACT

Cell polarity arises out of asymmetry of the distribution and organisation of cell contents. Polarity is an important feature of all living organisms and much energy is devoted to breaking symmetry and establishing polarity. Recent developments in our understanding of how the budding yeast Saccharomyces cerevisiae establishes and maintains polarity for cell division shed light on universal mechanisms that may be relevant to both asymmetric cell division and polarised cell migration in other organisms. Here, we summarise some of the recent developments in our understanding of polarity of the cytoskeleton and associated signalling molecules as it relates to cell migration. Parallels are drawn between planar cell polarity and apical-basal polarity in epithelial tissues and front-back polarity in migrating cells.


Subject(s)
Cell Movement , Cell Polarity , Biological Transport , Cell Membrane/metabolism , Cytoskeleton/metabolism , Saccharomyces cerevisiae/cytology
4.
Gastroenterology ; 146(5): 1386-96.e1-17, 2014 May.
Article in English | MEDLINE | ID: mdl-24462734

ABSTRACT

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is often lethal because it is highly invasive and metastasizes rapidly. The actin-bundling protein fascin has been identified as a biomarker of invasive and advanced PDAC and regulates cell migration and invasion in vitro. We investigated fascin expression and its role in PDAC progression in mice. METHODS: We used KRas(G12D) p53(R172H) Pdx1-Cre (KPC) mice to investigate the effects of fascin deficiency on development of pancreatic intraepithelial neoplasia (PanIn), PDAC, and metastasis. We measured levels of fascin in PDAC cell lines and 122 human resected PDAC samples, along with normal ductal and acinar tissues; we associated levels with patient outcomes. RESULTS: Pancreatic ducts and acini from control mice and early-stage PanINs from KPC mice were negative for fascin, but approximately 6% of PanIN3 and 100% of PDAC expressed fascin. Fascin-deficient KRas(G12D) p53(R172H) Pdx1-Cre mice had longer survival times, delayed onset of PDAC, and a lower PDAC tumor burdens than KPC mice; loss of fascin did not affect invasion of PDAC into bowel or peritoneum in mice. Levels of slug and fascin correlated in PDAC cells; slug was found to regulate transcription of Fascin along with the epithelial-mesenchymal transition. In PDAC cell lines and cells from mice, fascin concentrated in filopodia and was required for their assembly and turnover. Fascin promoted intercalation of filopodia into mesothelial cell layers and cell invasion. Nearly all human PDAC samples expressed fascin, and higher fascin histoscores correlated with poor outcomes, vascular invasion, and time to recurrence. CONCLUSIONS: The actin-bundling protein fascin is regulated by slug and involved in late-stage PanIN and PDAC formation in mice. Fascin appears to promote formation of filopodia and invasive activities of PDAC cells. Its levels in human PDAC correlate with outcomes and time to recurrence, indicating it might be a marker or therapeutic target for pancreatic cancer.


Subject(s)
Carcinoma in Situ/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carrier Proteins/metabolism , Microfilament Proteins/metabolism , Pancreatic Neoplasms/metabolism , Transcription Factors/metabolism , Animals , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/secondary , Carrier Proteins/genetics , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Epithelial-Mesenchymal Transition , Humans , Mice , Mice, Knockout , Microfilament Proteins/deficiency , Microfilament Proteins/genetics , Neoplasm Invasiveness , Neoplasm Recurrence, Local , Neoplasm Staging , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Pseudopodia/metabolism , RNA Interference , Snail Family Transcription Factors , Survival Analysis , Time Factors , Transcription Factors/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...