Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Orthop Relat Res ; (333): 76-86, 1996 Dec.
Article in English | MEDLINE | ID: mdl-8981883

ABSTRACT

Polyethylene has been used for more than 30 years as an orthopaedic bearing material; however, there has been recent concern regarding the early failure of a small percentage of the polyethylene bearings. The damage seen in some retrieved polyethylene components has been linked to gamma radiation sterilization in air, which was widely used by the industry for years. Gamma radiation in air has been documented to cause an increase in oxidation and degradation of mechanical properties with time. The degradation of polyethylene initiated by gamma sterilization in air has led the orthopaedic industry toward alternative sterilization methods, including gamma radiation in an inert gas or vacuum environment, ethylene oxide gas sterilization, and gas plasma sterilization. For many of these alternative techniques, little clinical performance data exist. This study is a comparative evaluation of sterilization methods using the same analytic techniques that have been used to document the effects of gamma sterilization in air on polyethylene. Fourier transform infrared spectroscopy, electron spin resonance, and uniaxial tensile testing are used to compare, respectively, the oxidation levels, free radical concentration, and mechanical properties of material sterilized by each method. The polyethylene is evaluated before sterilization, poststerilization, and postartificial aging. All examined alternative sterilization methods, when compared with gamma sterilization in air, caused less material degradation during a component's preimplantation shelf life.


Subject(s)
Polyethylenes/therapeutic use , Sterilization , Electron Spin Resonance Spectroscopy , Ethylene Oxide , Gamma Rays , Humans , Materials Testing , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Tensile Strength , Weight-Bearing
2.
Clin Orthop Relat Res ; (319): 28-40, 1995 Oct.
Article in English | MEDLINE | ID: mdl-7554641

ABSTRACT

Despite studies to determine their causes, significant variations in polyethylene acetabular component wear rates, radial cracking of component rims, and occasional delamination cannot be explained. A subsurface white band frequently occurs in such damaged components. These damaged components often are gamma sterilized. To date, the origin of the band and its effect on polyethylene chemical and mechanical properties, and hence, clinical performance, have not been confirmed, and correlations between radiation sterilization and clinical wear have not been made. By developing techniques for polyethylene retrieval testing and rating, chemical analysis, and mechanical analysis, this research has determined that gamma sterilization in air alters the chemical and mechanical properties of polyethylene over time, resulting in high subsurface oxidation, reduced ductility, and reduced strength. Gamma sterilization-induced oxidation is found to be most severe in the subsurface region of components, and coincides with zones of significantly reduced strength and ductility. This chemical and mechanical property degradation is time dependent and is not typically visible until after 3 years' postirradiation. The presence of the subsurface white band significantly correlates with clinical cracking and delamination observed in retrieved components. Wear of the retrieved components often is observed to have progressed into this heavily oxidized, weakened, and embrittled zone. A method for accelerated aging shows that irradiating in air causes oxidation damage in polyethylene components that is not seen with other sterilization methods. Modifications of gamma sterilization techniques to minimize this damage are discussed.


Subject(s)
Gamma Rays , Hip Prosthesis , Polyethylenes/radiation effects , Biomechanical Phenomena , Corrosion , Humans , Oxidation-Reduction , Polyethylenes/chemistry , Prosthesis Failure , Sterilization , Tensile Strength , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...