Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Med Chem ; 66(13): 8896-8916, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37343180

ABSTRACT

While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues.


Subject(s)
Cytostatic Agents , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/drug therapy , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/pharmacokinetics , Cytostatic Agents/therapeutic use , Blood-Brain Barrier
2.
J Invest Dermatol ; 139(11): 2252-2257.e1, 2019 11.
Article in English | MEDLINE | ID: mdl-31648685

ABSTRACT

This article aims to provide an overview of drug discovery with a focus on application within dermatology. The term "drug" can be used to describe a wide variety of agents, including small molecules, cell therapies, and antibodies, which may be dosed intravenously, orally, topically, or by other routes of administration. We summarize the economics and risks involved in drug discovery. Understanding the needs of patients and clinicians through use of a target product profile before initiating drug discovery can reduce time and effort spent developing a poor or unneeded drug. For small molecule drug discovery, a chemical starting point is then required. We present four options for finding a chemical starting point for drug discovery projects: screening libraries of compounds or modifying, reformulating, or repositioning a known drug. Examples of each technique's use in dermatology are provided. We also describe the subsequent steps involved in discovery of a new drug. To help interested readers, we provide information on how to engage with academic drug discovery centers or industrial partners.


Subject(s)
Costs and Cost Analysis , Drug Discovery/methods , Animals , Clinical Trials as Topic , Drug Discovery/economics , Drug Evaluation, Preclinical , Drug Repositioning , Humans , Risk , United States , United States Food and Drug Administration
3.
ACS Med Chem Lett ; 10(3): 341-347, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891137

ABSTRACT

In order to study the role of S1PRs in inflammatory skin disease, S1PR modulators are dosed orally and topically in animal models of disease. The topical application of S1PR modulators in these models may, however, lead to systemic drug concentrations, which can complicate interpretation of the observed effects. We set out to design soft drug S1PR modulators as topical tool compounds to overcome this limitation. A fast follower approach starting from the drug ponesimod allowed the rapid development of an active phenolic series of soft drugs. The phenols were, however, chemically unstable. Protecting the phenol as an ester removed the instability and provided a compound that is converted by enzymatic hydrolysis in the skin to the phenolic soft drug species. In simple formulations, topical dosing of these S1PR modulators to mice led to micromolar skin concentrations but no detectable blood concentrations. These topical tools will allow researchers to investigate the role of S1PR in skin, without involvement of systemic S1PR biology.

4.
J Med Chem ; 62(3): 1180-1202, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30570265

ABSTRACT

The leishmaniases are diseases that affect millions of people across the world, in particular visceral leishmaniasis (VL) which is fatal unless treated. Current standard of care for VL suffers from multiple issues and there is a limited pipeline of new candidate drugs. As such, there is a clear unmet medical need to identify new treatments. This paper describes the optimization of a phenotypic hit against Leishmania donovani, the major causative organism of VL. The key challenges were to balance solubility and metabolic stability while maintaining potency. Herein, strategies to address these shortcomings and enhance efficacy are discussed, culminating in the discovery of preclinical development candidate GSK3186899/DDD853651 (1) for VL.


Subject(s)
Leishmaniasis, Visceral/drug therapy , Morpholines/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Trypanocidal Agents/therapeutic use , Animals , Female , Hep G2 Cells , Humans , Leishmania donovani/drug effects , Male , Mice, Inbred BALB C , Molecular Structure , Morpholines/chemical synthesis , Morpholines/toxicity , Parasitic Sensitivity Tests , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/toxicity , Pyrazoles/chemical synthesis , Pyrazoles/toxicity , Pyrimidines/chemical synthesis , Pyrimidines/toxicity , Rats, Sprague-Dawley , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/toxicity
5.
Bioorg Med Chem Lett ; 28(19): 3255-3259, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30143424

ABSTRACT

The oral S1PR1 agonist ponesimod demonstrated substantial efficacy in a phase II clinical trial of psoriasis. Unfortunately, systemic side effects were observed, which included lymphopenia and transient bradycardia. We sought to develop a topical soft-drug S1PR1 agonist with an improved therapeutic index. By modifying ponesimod, we discovered an ester series of S1PR agonists. To increase metabolic instability in plasma we synthesised esters described as specific substrates for paraoxonase and butyrylcholinesterases, esterases present in human plasma.


Subject(s)
Drug Discovery , Receptors, Lysosphingolipid/drug effects , Thiazoles/pharmacology , Administration, Topical , Aryldialkylphosphatase/blood , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Esterases/blood , Esterases/metabolism , Humans , Skin/enzymology , Solubility , Sphingosine-1-Phosphate Receptors , Structure-Activity Relationship , Thiazoles/administration & dosage
6.
J Biol Chem ; 293(7): 2302-2317, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29229781

ABSTRACT

Increasing evidence has linked dysregulated interleukin (IL)-10 production by IL-10+ve B cells to autoimmunity, highlighting the importance of improving the understanding of the regulation of IL-10 production in these cells. In both B cells and myeloid cells, IL-10 can be produced in response to Toll-like receptor (TLR) agonists. In macrophages, previous studies have established that mitogen- and stress-activated protein kinases (MSKs) regulate IL-10 production via the phosphorylation of cAMP response element-binding (CREB) protein on the IL-10 promoter. We found here that although MSKs are activated in peritoneal B cells in response to TLR4 agonists, neither MSKs nor CREB are required for IL-10 production in these cells. Using a combination of chemical inhibitors and knockout mice, we found that IL-10 induction in B cells was regulated by an ERK1/2- and p90 ribosomal S6 kinase-dependent mechanism, unlike in macrophages in which p90 ribosomal S6 kinase was not required. This observation highlights fundamental differences in the signaling controlling IL-10 production in B cells and macrophages, even though these two cell types respond to a common TLR stimulus.


Subject(s)
B-Lymphocytes/metabolism , Interleukin-10/metabolism , Macrophages/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Female , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Toll-Like Receptor 4/genetics
7.
Malar J ; 16(1): 446, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29115999

ABSTRACT

BACKGROUND: Protein kinases have been shown to be key drug targets, especially in the area of oncology. It is of interest to explore the possibilities of protein kinases as a potential target class in Plasmodium spp., the causative agents of malaria. However, protein kinase biology in malaria is still being investigated. Therefore, rather than assaying against individual protein kinases, a library of 4731 compounds with protein kinase inhibitor-like scaffolds was screened against the causative parasite, Plasmodium falciparum. This approach is more holistic and considers the whole kinome, making it possible to identify compounds that inhibit more than one P. falciparum protein kinase, or indeed other malaria targets. RESULTS: As a result of this screen, 9 active compound series were identified; further validation was carried out on 4 of these series, with 3 being progressed into hits to lead chemistry. The detailed evaluation of one of these series is described. DISCUSSION: This screening approach proved to be an effective way to identify series for further optimisation against malaria. Compound optimisation was carried out in the absence of knowledge of the molecular target. Some of the series had to be halted for various reasons. Mode of action studies to find the molecular target may be useful when problems prevent further chemical optimisation. CONCLUSIONS: Progressible series were identified through phenotypic screening of a relatively small focused kinase scaffold chemical library.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Protein Kinase Inhibitors/pharmacology , Drug Evaluation, Preclinical
8.
Cell Chem Biol ; 24(8): 981-992.e4, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28781123

ABSTRACT

In late mitosis and G1, origins of DNA replication must be "licensed" for use in the upcoming S phase by being encircled by double hexamers of the minichromosome maintenance proteins MCM2-7. A "licensing checkpoint" delays cells in G1 until sufficient origins have been licensed, but this checkpoint is lost in cancer cells. Inhibition of licensing can therefore kill cancer cells while only delaying normal cells in G1. In a high-throughput cell-based screen for licensing inhibitors we identified a family of 2-arylquinolin-4-amines, the most potent of which we call RL5a. The binding of the origin recognition complex (ORC) to origin DNA is the first step of the licensing reaction. We show that RL5a prevents ORC forming a tight complex with DNA that is required for MCM2-7 loading. Formation of this ORC-DNA complex requires ATP, and we show that RL5a inhibits ORC allosterically to mimic a lack of ATP.


Subject(s)
Amines/pharmacology , DNA Replication/drug effects , DNA/metabolism , Origin Recognition Complex/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Amines/chemistry , Amines/metabolism , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromatin/chemistry , Chromatin/metabolism , Humans , Minichromosome Maintenance Proteins/chemistry , Minichromosome Maintenance Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Origin Recognition Complex/antagonists & inhibitors , Quinolines/pharmacology , Replication Origin/genetics , Thiazoles/pharmacology , Xenopus , Xenopus Proteins/metabolism
10.
ChemMedChem ; 10(11): 1809-20, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26381210

ABSTRACT

A screen of a focused kinase inhibitor library against Trypanosoma brucei rhodesiense led to the identification of seven series, totaling 121 compounds, which showed >50 % inhibition at 5 µm. Screening of these hits in a T. b. brucei proliferation assay highlighted three compounds with a 1H-imidazo[4,5-b]pyrazin-2(3H)-one scaffold that showed sub-micromolar activity and excellent selectivity against the MRC5 cell line. Subsequent rounds of optimisation led to the identification of compounds that exhibited good in vitro drug metabolism and pharmacokinetics (DMPK) properties, although in general this series suffered from poor solubility. A scaffold-hopping exercise led to the identification of a 1H-pyrazolo[3,4-b]pyridine scaffold, which retained potency. A number of examples were assessed in a T. b. brucei growth assay, which could differentiate static and cidal action. Compounds from the 1H-imidazo[4,5-b]pyrazin-2(3H)-one series were found to be either static or growth-slowing and not cidal. Compounds with the 1H-pyrazolo[3,4-b]pyridine scaffold were found to be cidal and showed an unusual biphasic nature in this assay, suggesting they act by at least two mechanisms.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Small Molecule Libraries/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Cell Line , Dose-Response Relationship, Drug , Humans , Molecular Structure , Parasitic Sensitivity Tests , Phenotype , Protein Kinase Inhibitors/chemistry , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Trypanosoma brucei rhodesiense/growth & development
11.
Nature ; 522(7556): 315-20, 2015 06 18.
Article in English | MEDLINE | ID: mdl-26085270

ABSTRACT

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


Subject(s)
Antimalarials/pharmacology , Gene Expression Regulation/drug effects , Malaria/parasitology , Plasmodium/drug effects , Plasmodium/metabolism , Protein Biosynthesis/drug effects , Quinolines/pharmacology , Animals , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Drug Discovery , Female , Life Cycle Stages/drug effects , Liver/drug effects , Liver/parasitology , Malaria/drug therapy , Male , Models, Molecular , Peptide Elongation Factor 2/antagonists & inhibitors , Peptide Elongation Factor 2/metabolism , Plasmodium/genetics , Plasmodium/growth & development , Plasmodium berghei/drug effects , Plasmodium berghei/physiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Plasmodium vivax/drug effects , Plasmodium vivax/metabolism , Quinolines/administration & dosage , Quinolines/chemistry , Quinolines/pharmacokinetics
13.
J Biol Chem ; 289(50): 34683-98, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25281741

ABSTRACT

Eukaryotic pre-mRNA splicing is an essential step in gene expression for all genes that contain introns. In contrast to transcription and translation, few well characterized chemical inhibitors are available with which to dissect the splicing process, particularly in cells. Therefore, the identification of specific small molecules that either inhibit or modify pre-mRNA splicing would be valuable for research and potentially also for therapeutic applications. We have screened a highly curated library of 71,504 drug-like small molecules using a high throughput in vitro splicing assay. This identified 10 new compounds that both inhibit pre-mRNA splicing in vitro and modify splicing of endogenous pre-mRNA in cells. One of these splicing modulators, DDD00107587 (termed "madrasin," i.e. 2-((7methoxy-4-methylquinazolin-2-yl)amino)-5,6-dimethylpyrimidin-4(3H)-one RNAsplicing inhibitor), was studied in more detail. Madrasin interferes with the early stages of spliceosome assembly and stalls spliceosome assembly at the A complex. Madrasin is cytotoxic at higher concentrations, although at lower concentrations it induces cell cycle arrest, promotes a specific reorganization of subnuclear protein localization, and modulates splicing of multiple pre-mRNAs in both HeLa and HEK293 cells.


Subject(s)
RNA Precursors/genetics , RNA Splicing/drug effects , Small Molecule Libraries/pharmacology , Cell Nucleus/drug effects , Cell Nucleus/genetics , Drug Evaluation, Preclinical , HEK293 Cells , HeLa Cells , High-Throughput Screening Assays , Humans , Quinazolines/chemistry , Quinazolines/pharmacology , RNA, Messenger/genetics , Small Molecule Libraries/chemistry
14.
ChemMedChem ; 8(7): 1127-37, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23776181

ABSTRACT

Human African trypanosomiasis (HAT) is a life-threatening disease with approximately 30 000-40 000 new cases each year. Trypanosoma brucei protein kinase GSK3 short (TbGSK3) is required for parasite growth and survival. Herein we report a screen of a focused kinase library against T. brucei GSK3. From this we identified a series of several highly ligand-efficient TbGSK3 inhibitors. Following the hit validation process, we optimised a series of diaminothiazoles, identifying low-nanomolar inhibitors of TbGSK3 that are potent in vitro inhibitors of T. brucei proliferation. We show that the TbGSK3 pharmacophore overlaps with that of one or more additional molecular targets.


Subject(s)
Drug Discovery , Glycogen Synthase Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/enzymology , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3/metabolism , Humans , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
15.
ChemMedChem ; 6(12): 2214-24, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-21913331

ABSTRACT

New drugs are urgently needed for the treatment of tropical parasitic diseases such as leishmaniasis and human African trypanosomiasis (HAT). This work involved a high-throughput screen of a focussed kinase set of ~3400 compounds to identify potent and parasite-selective inhibitors of an enzymatic Leishmania CRK3-cyclin 6 complex. The aim of this study is to provide chemical validation that Leishmania CRK3-CYC6 is a drug target. Eight hit series were identified, of which four were followed up. The optimisation of these series using classical SAR studies afforded low-nanomolar CRK3 inhibitors with significant selectivity over the closely related human cyclin dependent kinase CDK2.


Subject(s)
CDC2 Protein Kinase/antagonists & inhibitors , Leishmania/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protozoan Proteins/antagonists & inhibitors , Binding Sites , CDC2 Protein Kinase/metabolism , Computer Simulation , Drug Evaluation, Preclinical , Humans , Leishmania/enzymology , Leishmaniasis/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein Structure, Tertiary , Protozoan Proteins/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Structure-Activity Relationship , Urea/chemistry , Urea/pharmacology , Urea/therapeutic use
16.
ChemMedChem ; 6(10): 1832-40, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21834094

ABSTRACT

Screening of the Sigma-Aldrich Library of Pharmacologically Active Compounds (LOPAC) against cultured Trypanosoma brucei, the causative agent of African sleeping sickness, resulted in the identification of a number of compounds with selective antiproliferative activity over mammalian cells. These included (+)-(1R,2R)-U50488, a weak opioid agonist with an EC(50) value of 59 nM as determined in our T. brucei in vitro assay reported previously. This paper describes the modification of key structural elements of U50488 to investigate structure-activity relationships (SAR) and to optimise the antiproliferative activity and pharmacokinetic properties of this compound.


Subject(s)
3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/chemistry , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Narcotic Antagonists , Trypanosoma brucei brucei/drug effects , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacokinetics , Antiprotozoal Agents/pharmacokinetics , Humans , Models, Molecular , Receptors, Opioid/metabolism , Structure-Activity Relationship , Trypanosomiasis, African/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...