Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 40(51): 15624-30, 2001 Dec 25.
Article in English | MEDLINE | ID: mdl-11747437

ABSTRACT

Shedding of the ectodomain of angiotensin-converting enzyme (ACE) and numerous other membrane-anchored proteins results from a specific cleavage in the juxtamembrane (JM) stalk, catalyzed by "sheddases" that are commonly activated by phorbol esters and inhibited by peptide hydroxamates such as TAPI. Sheddases require a stalk of minimum length and steric accessibility. However, we recently found that substitution of the ACE stalk with an epidermal growth factor (EGF)-like domain from the low-density lipoprotein receptor (LDL-R) did not abolish shedding; cleavage of the ACE-JMEGF chimera occurred at a Gly-Phe bond in the third disulfide loop of the EGF domain. We have now constructed two additional stalk chimeras, in which the native stalk in ACE was replaced with the EGF domain from factor IX (ACE-JMfIX) and with a cysteine knot motif (ACE-JMmin23). Like the ACE-JMEGF chimera, the ACE-JMfIX and -JMmin23 chimeras were also shed, but mass spectral analysis revealed that the cleavage sites were adjacent to, rather than within, the disulfide-bonded domains. Homology modeling of the LDL-R EGF domain revealed that the third disulfide loop is larger and more flexible than the equivalent loop in the factor IX EGF domain. Similarly, the NMR structure of the Min-23 motif is highly compact. Hence, cleavage within a disulfide-bonded domain appears to require an unhindered loop. Interestingly, unlike wild-type ACE and the ACE-JMEGF and -JMmin23 chimeras, shedding of the ACE-JMfIX chimera was not stimulated by phorbol or inhibited by TAPI, but instead was inhibited by 3,4-dichloroisocoumarin, indicating the activity of an alternative sheddase. In summary, the ACE shedding machinery is highly versatile, but an accessible JM sequence, in the form of a flexible stalk or an exposed loop within or adjacent to a folded domain, appears to be required. Moreover, alternative sheddases are recruited, depending on the nature of the JM sequence.


Subject(s)
Disulfides/metabolism , Membrane Proteins/metabolism , Peptidyl-Dipeptidase A/metabolism , Amino Acid Sequence , Amino Acid Substitution/genetics , Animals , CHO Cells , Cricetinae , Epidermal Growth Factor/chemistry , Epidermal Growth Factor/genetics , Genetic Vectors/metabolism , Humans , Hydrolysis , Kinetics , Membrane Proteins/genetics , Models, Molecular , Molecular Sequence Data , Peptidyl-Dipeptidase A/genetics , Protein Structure, Tertiary/genetics , Receptors, LDL/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Subcellular Fractions/metabolism
2.
Biochem J ; 347 Pt 3: 711-8, 2000 May 01.
Article in English | MEDLINE | ID: mdl-10769174

ABSTRACT

The somatic and testis isoforms of angiotensin-converting enzyme (ACE) are both C-terminally anchored ectoproteins that are shed by an unidentified secretase. Although testis and somatic ACE both share the same stalk and membrane domains the latter was reported to be shed inefficiently compared with testis ACE, and this was ascribed to cleavage at an alternative site [Beldent, Michaud, Bonnefoy, Chauvet and Corvol (1995) J. Biol. Chem. 270, 28962-28969]. These differences constitute a useful model system of the regulation and substrate preferences of the ACE secretase, and hence we investigated this further. In transfected Chinese hamster ovary cells, human somatic ACE (hsACE) was indeed shed less efficiently than human testis ACE, and shedding of somatic ACE responded poorly to phorbol ester activation. However, using several analytical techniques, we found no evidence that the somatic ACE cleavage site differed from that characterized in testis ACE. First, anti-peptide antibodies raised to specific sequences on either side of the reported cleavage site (Arg(1137)/Leu(1138)) clearly recognized soluble porcine somatic ACE, indicating that cleavage was C-terminal to Arg(1137). Second, a competitive ELISA gave superimposable curves for porcine plasma ACE, secretase-cleaved porcine somatic ACE (eACE), and trypsin-cleaved ACE, suggesting similar C-terminal sequences. Third, mass-spectral analyses of digests of released soluble hsACE or of eACE enabled precise assignments of the C-termini, in each case to Arg(1203). These data indicated that soluble human and porcine somatic ACE, whether generated in vivo or in vitro, have C-termini consistent with cleavage at a single site, the Arg(1203)/Ser(1204) bond, identical with the Arg(627)/Ser(628) site in testis ACE. In conclusion, the inefficient release of somatic ACE is not due to cleavage at an alternative stalk site, but instead supports the hypothesis that the testis ACE ectodomain contains a motif that activates shedding, which is occluded by the additional domain found in somatic ACE.


Subject(s)
Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Testis/enzymology , Amino Acid Sequence , Animals , Antibodies/immunology , CHO Cells , Cell Membrane/metabolism , Cricetinae , Endopeptidases/metabolism , Enzyme Activation/drug effects , Humans , Isoenzymes/blood , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kidney/cytology , Kidney/enzymology , Kinetics , Male , Metalloendopeptidases/metabolism , Molecular Sequence Data , Peptide Fragments/blood , Peptide Fragments/chemistry , Peptide Fragments/immunology , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/blood , Peptidyl-Dipeptidase A/genetics , Phorbol 12,13-Dibutyrate/pharmacology , Solubility , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...