Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36978787

ABSTRACT

The brain, composed of billions of neurons, is a complex network of interacting dynamical systems controlling all body functions. Neurons are the building blocks of the nervous system and their impairment of their functions could result in neurodegenerative disorders. Accumulating evidence shows an increase of brain-affecting disorders, still today characterized by poor therapeutic options. There is a strong urgency to find new alternative strategies to prevent progressive neuronal loss. Polyphenols, a wide family of plant compounds with an equally wide range of biological activities, are suitable candidates to counteract chronic degenerative disease in the central nervous system. Herein, we will review their role in human healthcare and highlight their: antioxidant activities in reactive oxygen species-producing neurodegenerative pathologies; putative role as anti-acetylcholinesterase inhibitors; and protective activity in Alzheimer's disease by preventing Aß aggregation and tau hyperphosphorylation. Moreover, the pathology of these multifactorial diseases is also characterized by metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), most important for cellular function. In this scenario, polyphenols' action as natural chelators is also discussed. Furthermore, the critical importance of the role exerted by polyphenols on microbiota is assumed, since there is a growing body of evidence for the role of the intestinal microbiota in the gut-brain axis, giving new opportunities to study molecular mechanisms and to find novel strategies in neurological diseases.

2.
Foods ; 11(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35954087

ABSTRACT

'Asprinio' is a white dry wine characteristic for its acidity and aromatic flavour, known as emerging DOP wine in Southern Italy. Nevertheless, little information is available on the metabolomic profile of this wine. Thus, in this paper we evaluated the colourimetric parameters, 1H NMR profiles and free amino acids content of 'Asprinio' wines, bottled by two different wineries (hereafter 'Asprinio_A' and 'Asprinio_B') collected in 2019 and 2020, using 'Greco di Tufo' for comparison. The colourimetric parameters are similar for both 'Asprinio' wines and differ from 'Greco di Tufo' wines. On the other hand, both 1H NMR and free amino acid content profiles show different chemometric profiles among the three wines analysed, although the profiles are similar for both vintages. Moreover, the multivariate analyses carried out highlight differences between 'Asprinio_A' and 'Asprinio_B', which exbibit also different residual yeast and plant DNA. Overall, considering that the two-manufacturing wineries use 100% 'Asprinio' grape, the difference retrieved between the two 'Asprinio' wines could be explained by the different grapevine training systems: 'vite maritata' (training system inherited from Etruscans) for 'Asprinio_A' and 'guyot' for 'Asprinio_B'.

3.
Int J Biol Macromol ; 214: 459-469, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35753513

ABSTRACT

Here, we report the characterization (purification, autoxidation rate, pseudoperoxidase activity) and amino acid sequence determination of S. scombrus (Atlantic mackerel) and S. colias (Tinker mackerel) mioglobins (Mbs), considering the increasing consumption of fresh and canned mackerel meat and Mb implication in meat storage (e.g.: browning and lipid oxidation). We found that Atlantic mackerel Mb has major autoxidation rate (0.204 ± 0.013 h-1) compared to Tinker mackerel Mb (0.140 ± 0.009 h-1), while the pseudoperoxidase activity is major for Tinker mackerel (Km: 87.71 ± 7.19 µM; kcat: 0.32 s-1) Mb with respect to Atlantic mackerel (Km: 96.08 ± 6.91 µM; kcat: 0.50 s-1). These functional differences are confirmed by primary structure determination, in which six amino acid substitutions are found, with the first N-terminal amino acid residue acetylated. Furthermore, we predicted by AphaFold 3D model both fish Mbs and used them to investigate the possible structural differences. In addition, phylogenetic analysis using Mb sequences from Scombridae family confirms that Atlantic and Tinker mackerels are two distinct species. Finally, an analytic qualitative RP-HPLC method to distinguish S. scombrus and S. colias specimens was developed considering the different retention times of the two mackerel apoMbs.


Subject(s)
Myoglobin , Perciformes , Animals , Meat , Perciformes/genetics , Phylogeny , Seafood
4.
Plants (Basel) ; 10(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064272

ABSTRACT

Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the Solanum lycopersicum cv. MicroTom model system, we assessed how the modulation of nitrogen metabolites and potassium levels could contribute to mediate physiological mechanisms that are known to occur in response to salt/and or osmotic stress. Here we provide evidence that the reshaping of amino acid metabolism can work as a functional effector, coordinating ion homeostasis, osmotic adjustment and scavenging of reactive oxygen species under increased osmotic stress in MicroTom plant cells. The Superfifty biostimulant is responsible for a minor amino acid rich-phenotype and could represent an interesting instrument to untangle nitrogen metabolism dynamics in response to salinity and/or osmotic stress.

5.
Plants (Basel) ; 10(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562862

ABSTRACT

Hordeum maritimum With. is a wild salt tolerant cereal present in the saline depressions of the Eastern Tunisia, where it significantly contributes to the annual biomass production. In a previous study on shoot tissues it was shown that this species withstands with high salinity at the seedling stage restricting the sodium entry into shoot and modulating over time the leaf synthesis of organic osmolytes for osmotic adjustment. However, the tolerance strategy mechanisms of this plant at root level have not yet been investigated. The current research aimed at elucidating the morphological, physiological and biochemical changes occurring at root level in H. maritimum and in the salt sensitive cultivar Hordeum vulgare L. cv. Lamsi during five-weeks extended salinity (200 mM NaCl), salt removal after two weeks of salinity and non-salt control. H. maritimum since the first phases of salinity was able to compartmentalize higher amounts of sodium in the roots compared to the other cultivar, avoiding transferring it to shoot and impairing photosynthetic metabolism. This allowed the roots of wild plants to receive recent photosynthates from leaves, gaining from them energy and carbon skeletons to compartmentalize toxic ions in the vacuoles, synthesize and accumulate organic osmolytes, control ion and water homeostasis and re-establish the ability of root to grow. H. vulgare was also able to accumulate compatible osmolytes but only in the first weeks of salinity, while soon after the roots stopped up taking potassium and growing. In the last week of salinity stress, the wild species further increased the root to shoot ratio to enhance the root retention of toxic ions and consequently delaying the damages both to shoot and root. This delay of few weeks in showing the symptoms of stress may be pivotal for enabling the survival of the wild species when soil salinity is transient and not permanent.

6.
Biology (Basel) ; 9(9)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872247

ABSTRACT

Algal biomass, extracts, or derivatives have long been considered a valuable material to bring benefits to humans and cultivated plants. In the last decades, it became evident that algal formulations can induce multiple effects on crops (including an increase in biomass, yield, and quality), and that algal extracts contain a series of bioactive compounds and signaling molecules, in addition to mineral and organic nutrients. The need to reduce the non-renewable chemical input in agriculture has recently prompted an increase in the use of algal extracts as a plant biostimulant, also because of their ability to promote plant growth in suboptimal conditions such as saline environments is beneficial. In this article, we discuss some research areas that are critical for the implementation in agriculture of macro- and microalgae extracts as plant biostimulants. Specifically, we provide an overview of current knowledge and achievements about extraction methods, compositions, and action mechanisms of algal extracts, focusing on salt-stress tolerance. We also outline current limitations and possible research avenues. We conclude that the comparison and the integration of knowledge on the molecular and physiological response of plants to salt and to algal extracts should also guide the extraction procedures and application methods. The effects of algal biostimulants have been mainly investigated from an applied perspective, and the exploitation of different scientific disciplines is still much needed for the development of new sustainable strategies to increase crop tolerance to salt stress.

7.
Front Plant Sci ; 10: 1507, 2019.
Article in English | MEDLINE | ID: mdl-31867024

ABSTRACT

Omeprazole is a selective proton pump inhibitor in humans that inhibits the H+/K+-ATPase of gastric parietal cells. Omeprazole has been recently shown to act as a plant growth regulator and enhancer of salt stress tolerance. Here, we report that omeprazole treatment in hydroponically grown maize improves nitrogen uptake and assimilation. The presence of micromolar concentrations of omeprazole in the nutrient solution alleviates the chlorosis and growth inhibition induced by low nitrogen availability. Nitrate uptake and assimilation is enhanced in omeprazole treated plants through changes in nitrate reductase activity, primary metabolism, and gene expression. Omeprazole enhances nitrate assimilation through an interaction with nitrate reductase, altering its activation state and affinity for nitrate as a substrate. Omeprazole and its targets represent a novel method for enhancing nitrogen use efficiency in plants.

8.
Front Plant Sci ; 10: 230, 2019.
Article in English | MEDLINE | ID: mdl-30899269

ABSTRACT

Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.

9.
Funct Plant Biol ; 45(11): 1096-1109, 2018 Oct.
Article in English | MEDLINE | ID: mdl-32290971

ABSTRACT

Hordeum maritimum With. (= H. marinum Huds. subsp. marinum, 2n=14) is a wild cereal present in the saline depressions of the Soliman and Kelbia Sebkhas, which contributes significantly to annual biomass production in Tunisia. This species is able to tolerate high NaCl concentrations at the seedling stage without showing symptoms of toxicity; however, the tolerance strategy mechanisms of this plant have not yet been unravelled. Our metabolite analysis, performed on leaves of H. maritimum during extended stress in comparison with Hordeum vulgare L. cv. Lamsi, has revealed an adaptive response of the wild species based on a different temporal accumulation pattern of ions and compatible metabolites. Further, wild and cultivated genotypes with contrasting salt-tolerant behaviour display different pattern of metabolites when salt stress is prolonged over 2 weeks. In particular, when exposed to up to 3 weeks of 200mM NaCl salt stress, H. maritimum is able to maintain lower leaf concentrations of sodium and chloride, and higher concentrations of potassium compared with H. vulgare. This likely restricts sodium entry into plants at the root level, and uses the toxic ions, glycine betaine and low levels of proline for osmotic adjustment. Under prolonged stress, the accumulation of proline increases, reaching the highest levels in concomitance with the decrease of potassium to sodium ratio, the increase of hydrogen peroxide and decrease of chlorophylls. The modulation of proline accumulation over time can be interpreted as an adaptive response to long-term salinity. Moreover, once synthetised glycine betaine is transported but not metabolised, it can contribute together with proline to osmotically balance H. maritimum leaves and protect them from oxidative stress. The 2-3 week delay of H. maritimum in showing the symptoms of stress and damages compared with H. vulgare could be important in the survival of plants when soil salinity is not a permanent condition, but just a transient state of stress.

10.
Food Chem ; 240: 559-566, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28946311

ABSTRACT

The failure of the antioxidant scavenging system in advanced ripening stages, causing oxidative stress, is one of the most important factor of fruit decay. Production of rich antioxidant fruit could represent a way to delay fruit senescence and preserve its characteristics. We investigated the antioxidant metabolites (ascorbate, glutathione, tocopherols, and polyphenols) and enzymes (ascorbic peroxidases, peroxidases and polyphenol oxidases) involved in the antioxidant response in forty-three accessions of sweet cherry fruits from Campania region. Our results highlight accessions with high antioxidant metabolites contents but low enzymatic activities. These represent important factors in both pre- and post-harvest on the qualitative and nutritional characteristics of sweet cherry. Observed differences are probably due to endogenous characteristics making these accessions particularly interesting for breeding programs aimed to improve fruit quality and shelf-life and for addressing the cultivation of a specific characterized cultivar based on the intended use, fresh consumption or processed products.


Subject(s)
Prunus avium , Antioxidants , Ascorbic Acid , Fruit
11.
Data Brief ; 15: 522-527, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29071288

ABSTRACT

In this article, we reported the original data obtained by the study of metabolites and enzymes involved in sweet cherry antioxidant system. We measured hydrogen peroxide (H2O2) and malondialdehyde (MDA), which are indicator of oxidative stress. Moreover, we measured the concentration of reduced and oxidized ascorbate and glutathione that are involved in ROS detoxification together with phenolics, anthocyanins and tocopherols. Among antioxidant enzymes, we analyzed the activities of ascorbate peroxidase (APX; EC 1.11.1.11), and the soluble and bound forms of polyphenol oxidase (PPO; EC 1.10.3.1) and guaiacol peroxidase (POD; EC 1.11.1.7). The data reported in this paper are related to the research article "Metabolic characterization and antioxidant activity in sweet cherry (Prunus avium L.) Campania accessions", authored by Mirto et al. (2018) [1].

12.
Front Plant Sci ; 8: 1220, 2017.
Article in English | MEDLINE | ID: mdl-28769943

ABSTRACT

Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP), a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl), respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching), protection of the photosynthetic system (improving quantum yield of photosystem II) and regulation of ion homeostasis (improving the K+:Na+ ratio in leaves and roots). To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions. Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport.

13.
Physiol Plant ; 159(3): 290-312, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27653956

ABSTRACT

Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m-2 s-1 photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m-2 s-1 ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.


Subject(s)
Amino Acids/metabolism , Carbohydrate Metabolism , Triticum/physiology , Carbohydrate Metabolism/drug effects , Carbohydrate Metabolism/radiation effects , Carbon/metabolism , Light , Models, Biological , Nitrogen/metabolism , Photosynthesis/drug effects , Photosynthesis/radiation effects , Pyrroles/metabolism , Salinity , Seedlings/drug effects , Seedlings/physiology , Seedlings/radiation effects , Sodium Chloride/pharmacology , Stress, Physiological , Triticum/drug effects , Triticum/radiation effects , Water/physiology , gamma-Aminobutyric Acid/metabolism
14.
Food Chem Toxicol ; 95: 64-74, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27375189

ABSTRACT

In the course of a cytotoxicity screening of Mediterranean plants vs. neuroblastoma cells, Pistacia lentiscus was of interest. Pl-C extract, prepared from dried leaves by ultrasound assisted maceration (UAM) in chloroform, was profiled through using GC-MS techniques. To evaluate Pl-C cytotoxicity towards SH-SY5Y and SK-N-BE(2)-C cell lines, MTT, SRB and LDH assays were performed. The caspase-3 activation, DNA fragmentation, as well as micronucleation, were also evaluated. The Pl-C oxidant/antioxidant ability was estimated using different methods. The extract, rich in pentacyclic triterpenes, inhibited mitochondrial redox activity and cell viability of the tested cell lines. LDH assay established that Pl-C did not affect the cell membrane integrity. Indeed, it was able to activate caspase-3 and to cause a ladder pattern of DNA. Western blotting analysis showed that Pl-C processed caspase-3 providing two cleavage products of approximately 20 and 17-kDa, whose densitometric evaluation highlighted that Pl-C was more effective than vinblastine by 3-fold. The pro-apoptotic effect could be related to a disturbance in cell redox balance. In fact, it increased intracellular ROS production, GSSG/GSH ratio and the formation of lipoperoxidation products. The data obtained prompted to further investigate and assess the in vivo efficacy of Pl-C to prevent and/or treat neuroblastoma.


Subject(s)
Apoptosis/drug effects , Gas Chromatography-Mass Spectrometry/methods , Neuroblastoma/pathology , Neurons/pathology , Pistacia/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Antioxidants/metabolism , Blotting, Western , Caspase 3/metabolism , Humans , Metabolomics/methods , Mitochondria/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neurons/drug effects , Neurons/metabolism , Reactive Oxygen Species/metabolism
15.
Front Plant Sci ; 7: 2035, 2016.
Article in English | MEDLINE | ID: mdl-28119716

ABSTRACT

Plants are currently experiencing increasing salinity problems due to irrigation with brackish water. Moreover, in fields, roots can grow in soils which show spatial variation in water content and salt concentration, also because of the type of irrigation. Salinity impairs crop growth and productivity by inhibiting many physiological and metabolic processes, in particular nitrate uptake, translocation, and assimilation. Salinity determines an increase of sap osmolality from about 305 mOsmol kg-1 in control roots to about 530 mOsmol kg-1 in roots under salinity. Root cells adapt to salinity by sequestering sodium in the vacuole, as a cheap osmoticum, and showing a rearrangement of few nitrogen-containing metabolites and sucrose in the cytosol, both for osmotic adjustment and oxidative stress protection, thus providing plant viability even at low nitrate levels. Mainly glycine betaine and sucrose at low nitrate concentration, and glycine betaine, asparagine and proline at high nitrate levels can be assumed responsible for the osmotic adjustment of the cytosol, the assimilation of the excess of ammonium and the scavenging of ROS under salinity. High nitrate plants with half of the root system under salinity accumulate proline and glutamine in both control and salt stressed split roots, revealing that osmotic adjustment is not a regional effect in plants. The expression level and enzymatic activities of asparagine synthetase and Δ1-pyrroline-5-carboxylate synthetase, as well as other enzymatic activities of nitrogen and carbon metabolism, are analyzed.

16.
Mol Biol Rep ; 40(7): 4173-80, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23644981

ABSTRACT

Nursery growing as well as common landscape hydrangeas are all susceptible to leaf spot fungus Cercospora hydrangeae. Warm and rainy weather causes the fungal spores to germinate quickly and spread over the plant leaves forming small purple or brown spots. Although Hydrangea plants are not killed by leaf spot, it detracts from the value of plants through the reduction of flowering and plant vigor. The aim of our study was to isolate, characterize and investigate the expression profile of Hydrangea macrophylla resistance (R) gene transcripts under C. hydrangeae fungus infection and examine their evolutionary relationships by phylogenetic analysis. R-genes are thought to be one of the components of the genetic resistance in plants and most of them encode nucleotide binding site-leucine rich repeat (NBS-LRR) proteins. A cDNA-NBS strategy was carried out using as template cDNAs isolated from control and infected plant leaves. The cDNA-NBS profiling gave an excellent bands reproducibility. Twenty new transcripts corresponding to NBS-LRR proteins were identified only in infected plants. The extent of positivity between the aminoacid sequences at NBS region varied from 45 to 90 %, which indicates the diversity among the RGAs. The results of this paper will provide a genomic framework for the further isolation of candidate disease resistance NBS-encoding genes in Hortensia, and contribute to the understanding of the evolutionary mode of NBS-encoding genes in Hydrangeaceae crops.


Subject(s)
Ascomycota/physiology , Gene Expression Regulation, Plant , Genes, Plant , Hydrangea/genetics , Hydrangea/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Binding Sites , DNA, Complementary , Hydrangea/classification , Leucine-Rich Repeat Proteins , Molecular Sequence Data , Phylogeny , Proteins/genetics , Proteins/metabolism , Transcription, Genetic
17.
Mol Biol Rep ; 39(12): 10193-200, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23014994

ABSTRACT

Buffalo dung is a low-cost substrate with plenty of carbohydrates, an optimal carbon/nitrogen ratio, and a rich microbial flora, and could become a valuable source of biogas. Therefore, in the present study we compared the type and amount of specific eubacteria to the different configurations of pH, temperature and thermal pretreatment after fermentation in batch reactors in order to understand the suitability of buffalo manure for hydrogen production. The phylogenetic structure of the microbial community in fermentation samples was studied using denaturing gradient gel electrophoresis to generate fingerprints of 16S rRNA genes. The sequences analysis revealed abundance of the phyla Bacteroidetes and Firmicutes, and in particular of the order Clostridiales. Very active hydrogen producing bacteria belonging to Clostridium cellulosi species were identified demonstrating the suitability of this substrate to produce hydrogen. Moreover, a large fraction of 16S-rDNA amplicons could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms involved in anaerobic fermentation in digesters or bioreactors are still unclassified or unknown.


Subject(s)
Bacteria/metabolism , Buffaloes/microbiology , Feces/microbiology , Hydrogen/metabolism , Animals , Bacteria/genetics , Bacteria/isolation & purification , Culture Techniques , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Denaturing Gradient Gel Electrophoresis , Fermentation , Hydrogen-Ion Concentration , Metagenome , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/isolation & purification , Sequence Analysis, DNA , Temperature
18.
Mol Biol Rep ; 39(8): 7843-53, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22544572

ABSTRACT

Ascorbate is an antioxidant and a cofactor of many dioxygenases in plant and animal cell metabolism. A well-recognized enzyme consuming ascorbate is ascorbate peroxidase (APX), which catalyses the reduction of hydrogen peroxide to water with the simultaneous oxidation of ascorbate with a high specificity. The isolation and characterisation of new Apx cDNAs, could provide new insights about the physiological roles and regulation of these enzymes. In this work chloroplastic (Br-chlApx) and cytosolic (Br-cApx) isoform transcripts were isolated by RT-PCR in Brassica rapa and expression changes were analysed by semi-quantitative RT-PCR performed in different tissues (layer, stalk and florets) at different days (0, 4 and 14 day). The result showed that BrApx isoforms were differentially expressed and the Br-chlApx, in particular in the layer, had the highest expression level and remained unchanged also after 14 day after harvest. In addition, expression changes were compared with total BrAPX activity and the results showed that the activity decreased in all tissues at 14 day after harvest, independently of transcripts. Finally, additional solutes as the substrate of APX ascorbate and its oxidized form, dehydroascorbate, as well as α-tocopherol, the major vitamin E compound that prevents the propagation of lipid peroxidation in thylakoid membranes, were followed. The changes in the BrApx expression, BrAPX activity and metabolites can provide further evidence of the close relationships that exist between antioxidants which compensate for each other and suggest that there are multiple sites of reciprocal control.


Subject(s)
Ascorbate Peroxidases/genetics , Brassica rapa/enzymology , Ascorbate Peroxidases/metabolism , Brassica rapa/genetics , Cloning, Molecular , DNA, Complementary , Enzyme Activation , Gene Expression , Gene Expression Regulation, Plant , Isoenzymes/genetics , Isoenzymes/metabolism , Metabolome , Molecular Sequence Data , Transcription, Genetic
19.
Bioinformation ; 8(6): 267-71, 2012.
Article in English | MEDLINE | ID: mdl-22493534

ABSTRACT

The phylogenetic relationships among thirty-seven new Ty1-copia group retrotransposons in seven angiosperm plants were examined by reverse transcriptase and ribonuclease H sequence analysis. Distribution pattern of the retrotransposons of closely related plant species generally reflects a close phylogenetic relationship. In contrast, we found that several retrotransposon sequences from the same genome exhibited a high degree of divergence and had a relatively high degree of identity versus retrotransposon sequences from widely divergent species, including an ancestral phytopathogen fungus. This finding supports the hypothesis that the horizontal transmission from phytopatogen organism to the host flowering plants could have played a role in the evolutionary dynamics of Ty1-copia group retrotransposons.

20.
Mol Biol Rep ; 39(4): 3409-18, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21725640

ABSTRACT

Long terminal repeat (LTR)-retrotransposons are mobile genetic elements that are ubiquitous in plants and constitute a major portion of their nuclear genomes. LTR- retrotransposons possess unique properties that make them appropriate for investigating relationships between populations, varieties and closely related species. Myrtus communis L. is an evergreen shrub growing spontaneously throughout the Mediterranean area. Accessions show significant variations for agriculturally important traits, so the development of specific molecular markers for conservation and characterization of myrtle germplasm is desirable to conserve biodiversity. In this study, we isolated the first retrotransposon Ty1-copia-like element (Tmc1) in Myrtus communis L. genome and used this as a molecular marker. We successfully employed the S-SAP marker system to specifically characterize four myrtle accessions belonging to different areas in the province of Caserta (Italy). The high level of polymorphism detected in isolated LTRs, make Tmc1 a good molecular marker for this species. Our findings confirm that retrotransposon-based molecular markers are particularly valuable tools for plant molecular characterization studies.


Subject(s)
DNA, Plant/isolation & purification , Genome, Plant/genetics , Myrtus/genetics , Polymerase Chain Reaction/methods , Polymorphism, Genetic , Retroelements/genetics , Base Sequence , DNA, Plant/genetics , Genetic Markers , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Terminal Repeat Sequences/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...