Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Comput Biol Med ; 161: 106701, 2023 07.
Article in English | MEDLINE | ID: mdl-37244145

ABSTRACT

Quantitative image analysis models are used for medical imaging tasks such as registration, classification, object detection, and segmentation. For these models to be capable of making accurate predictions, they need valid and precise information. We propose PixelMiner, a convolution-based deep-learning model for interpolating computed tomography (CT) imaging slices. PixelMiner was designed to produce texture-accurate slice interpolations by trading off pixel accuracy for texture accuracy. PixelMiner was trained on a dataset of 7829 CT scans and validated using an external dataset. We demonstrated the model's effectiveness by using the structural similarity index (SSIM), peak signal to noise ratio (PSNR), and the root mean squared error (RMSE) of extracted texture features. Additionally, we developed and used a new metric, the mean squared mapped feature error (MSMFE). The performance of PixelMiner was compared to four other interpolation methods: (tri-)linear, (tri-)cubic, windowed sinc (WS), and nearest neighbor (NN). PixelMiner produced texture with a significantly lowest average texture error compared to all other methods with a normalized root mean squared error (NRMSE) of 0.11 (p < .01), and the significantly highest reproducibility with a concordance correlation coefficient (CCC) ≥ 0.85 (p < .01). PixelMiner was not only shown to better preserve features but was also validated using an ablation study by removing auto-regression from the model and was shown to improve segmentations on interpolated slices.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Reproducibility of Results , Tomography, X-Ray Computed/methods , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods
2.
J Eur Acad Dermatol Venereol ; 37(6): 1160-1167, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36785993

ABSTRACT

Basal cell carcinoma (BCC) is one of the most common types of cancer. The growing incidence worldwide and the need for fast, reliable and less invasive diagnostic techniques make a strong case for the application of different artificial intelligence techniques for detecting and classifying BCC and its subtypes. We report on the current evidence regarding the application of handcrafted and deep radiomics models used for the detection and classification of BCC in dermoscopy, optical coherence tomography and reflectance confocal microscopy. We reviewed all the articles that were published in the last 10 years in PubMed, Web of Science and EMBASE, and we found 15 articles that met the inclusion criteria. We included articles that are original, written in English, focussing on automated BCC detection in our target modalities and published within the last 10 years in the field of dermatology. The outcomes from the selected publications are presented in three categories depending on the imaging modality and to allow for comparison. The majority of articles (n = 12) presented different AI solutions for the detection and/or classification of BCC in dermoscopy images. The rest of the publications presented AI solutions in OCT images (n = 2) and RCM (n = 1). In addition, we provide future directions for the application of these techniques for the detection of BCC. In conclusion, the reviewed publications demonstrate the potential benefit of AI in the detection of BCC in dermoscopy, OCT and RCM.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Humans , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Artificial Intelligence , Sensitivity and Specificity , Dermoscopy/methods , Carcinoma, Basal Cell/diagnostic imaging , Carcinoma, Basal Cell/pathology , Tomography, Optical Coherence , Microscopy, Confocal/methods
3.
J Magn Reson Imaging ; 56(2): 592-604, 2022 08.
Article in English | MEDLINE | ID: mdl-34936160

ABSTRACT

BACKGROUND: Radiomic features extracted from breast MRI have potential for diagnostic, prognostic, and predictive purposes. However, before they can be used as biomarkers in clinical decision support systems, features need to be repeatable and reproducible. OBJECTIVE: Identify repeatable radiomics features within breast tissue on prospectively collected MRI exams through multiple test-retest measurements. STUDY TYPE: Prospective. POPULATION: 11 healthy female volunteers. FIELD STRENGTH/SEQUENCE: 1.5 T; MRI exams, comprising T2-weighted turbo spin-echo (T2W) sequence, native T1-weighted turbo gradient-echo (T1W) sequence, diffusion-weighted imaging (DWI) sequence using b-values 0/150/800, and corresponding derived ADC maps. ASSESSMENT: 18 MRI exams (three test-retest settings, repeated on 2 days) per healthy volunteer were examined on an identical scanner using a fixed clinical breast protocol. For each scan, 91 features were extracted from the 3D manually segmented right breast using Pyradiomics, before and after image preprocessing. Image preprocessing consisted of 1) bias field correction (BFC); 2) z-score normalization with and without BFC; 3) grayscale discretization using 32 and 64 bins with and without BFC; and 4) z-score normalization + grayscale discretization using 32 and 64 bins with and without BFC. STATISTICAL TESTS: Features' repeatability was assessed using concordance correlation coefficient(CCC) for each pair, i.e. each MRI was compared to each of the remaining 17 MRI with a cut-off value of CCC > 0.90. RESULTS: Images without preprocessing produced the highest number of repeatable features for both T1W sequence and ADC maps with 15 of 91 (16.5%) and 8 of 91 (8.8%) repeatable features, respectively. Preprocessed images produced between 4 of 91 (4.4%) and 14 of 91 (15.4%), and 6 of 91 (6.6%) and 7 of 91 (7.7%) repeatable features, respectively for T1W and ADC maps. Z-score normalization produced highest number of repeatable features, 26 of 91 (28.6%) in T2W sequences, in these images, no preprocessing produced 11 of 91 (12.1%) repeatable features. DATA CONCLUSION: Radiomic features extracted from T1W, T2W sequences and ADC maps from breast MRI exams showed a varying number of repeatable features, depending on the sequence. Effects of different preprocessing procedures on repeatability of features were different for each sequence. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Subject(s)
Breast , Magnetic Resonance Imaging , Breast/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Female , Humans , Magnetic Resonance Imaging/methods , Prospective Studies , Radiography
4.
Methods ; 188: 20-29, 2021 04.
Article in English | MEDLINE | ID: mdl-32504782

ABSTRACT

The advancement of artificial intelligence concurrent with the development of medical imaging techniques provided a unique opportunity to turn medical imaging from mostly qualitative, to further quantitative and mineable data that can be explored for the development of clinical decision support systems (cDSS). Radiomics, a method for the high throughput extraction of hand-crafted features from medical images, and deep learning -the data driven modeling techniques based on the principles of simplified brain neuron interactions, are the most researched quantitative imaging techniques. Many studies reported on the potential of such techniques in the context of cDSS. Such techniques could be highly appealing due to the reuse of existing data, automation of clinical workflows, minimal invasiveness, three-dimensional volumetric characterization, and the promise of high accuracy and reproducibility of results and cost-effectiveness. Nevertheless, there are several challenges that quantitative imaging techniques face, and need to be addressed before the translation to clinical use. These challenges include, but are not limited to, the explainability of the models, the reproducibility of the quantitative imaging features, and their sensitivity to variations in image acquisition and reconstruction parameters. In this narrative review, we report on the status of quantitative medical image analysis using radiomics and deep learning, the challenges the field is facing, propose a framework for robust radiomics analysis, and discuss future prospects.


Subject(s)
Decision Support Systems, Clinical , Deep Learning , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Precision Medicine/methods , Humans , Reproducibility of Results
5.
Sci Rep ; 10(1): 14163, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32843663

ABSTRACT

Radiomics is an emerging field using the extraction of quantitative features from medical images for tissue characterization. While MRI-based radiomics is still at an early stage, it showed some promising results in studies focusing on breast cancer patients in improving diagnoses and therapy response assessment. Nevertheless, the use of radiomics raises a number of issues regarding feature quantification and robustness. Therefore, our study aim was to determine the robustness of radiomics features extracted by two commonly used radiomics software with respect to variability in manual breast tumor segmentation on MRI. A total of 129 histologically confirmed breast tumors were segmented manually in three dimensions on the first post-contrast T1-weighted MR exam by four observers: a dedicated breast radiologist, a resident, a Ph.D. candidate, and a medical student. Robust features were assessed using the intraclass correlation coefficient (ICC > 0.9). The inter-observer variability was evaluated by the volumetric Dice Similarity Coefficient (DSC). The mean DSC for all tumors was 0.81 (range 0.19-0.96), indicating a good spatial overlap of the segmentations based on observers of varying expertise. In total, 41.6% (552/1328) and 32.8% (273/833) of all RadiomiX and Pyradiomics features, respectively, were identified as robust and were independent of inter-observer manual segmentation variability.


Subject(s)
Breast Neoplasms/diagnostic imaging , Computational Biology/methods , High-Throughput Screening Assays/methods , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Observer Variation , Female , Humans , Magnetic Resonance Imaging/statistics & numerical data , Neoplasm Invasiveness/diagnostic imaging , Retrospective Studies , Software
6.
Eur J Radiol ; 121: 108736, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31734639

ABSTRACT

PURPOSE: MRI-based tumor response prediction to neoadjuvant systemic therapy (NST) in breast cancer patients is increasingly being studied using radiomics with outcomes that appear to be promising. The aim of this study is to systematically review the current literature and reflect on its quality. METHODS: PubMed and EMBASE databases were systematically searched for studies investigating MRI-based radiomics for tumor response prediction. Abstracts were screened by two reviewers independently. The quality of the radiomics workflow of eligible studies was assessed using the Radiomics Quality Score (RQS). An overview of the methodologies used in steps of the radiomics workflow and current results are presented. RESULTS: Sixteen studies were included with cohort sizes ranging from 35 to 414 patients. The RQS scores varied from 0 % to 41.2 %. Methodologies in the radiomics workflow varied greatly, especially region of interest segmentation, features selection, and model development with heterogeneous outcomes as a result. Seven studies applied univariate analysis and nine studies applied multivariate analysis. Most studies performed their analysis on the pretreatment dynamic contrast-enhanced T1-weighted sequence. Entropy was the best performing individual feature with AUC values ranging from 0.83 to 0.85. The best performing multivariate prediction model, based on logistic regression analysis, scored a validation AUC of 0.94. CONCLUSION: This systematic review revealed large methodological heterogeneity for each step of the MRI-based radiomics workflow, consequently, the (overall promising) results are difficult to compare. Consensus for standardization of MRI-based radiomics workflow for tumor response prediction to NST in breast cancer patients is needed to further improve research.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Magnetic Resonance Imaging/methods , Neoadjuvant Therapy , Adult , Breast/diagnostic imaging , Cohort Studies , Female , Humans , Middle Aged , Predictive Value of Tests , Treatment Outcome
7.
J Periodontol ; 46(2): 119-26, 1975 Feb.
Article in English | MEDLINE | ID: mdl-1090720

ABSTRACT

The Orbison ultrasonic instrument and the Cavitron ultrasonic dental unit were compared for the smoothness of the root surfaces they produced. Twenty teeth were analyzed with the scanning electron microscope and classified as to rough or smooth. Both instruments produced similar degrees of smoothness on the root surfaces with minimal scarring. Application of these instruments to the root surface apical to the epithelial attachment produced residual smearing of some of the collagenous fibrils.


Subject(s)
Dental Prophylaxis/instrumentation , Dental Scaling/instrumentation , Tooth Root , Ultrasonics/instrumentation , Dental Calculus/therapy , Dental Cementum/ultrastructure , Dental Scaling/standards , Humans , Microscopy, Electron, Scanning , Surface Properties , Tooth Root/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...