Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Educ ; 22(1): 537, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35818052

ABSTRACT

BACKGROUND: In-situ simulation is increasingly employed in healthcare settings to support learning and improve patient, staff and organisational outcomes. It can help participants to problem solve within real, dynamic and familiar clinical settings, develop effective multidisciplinary team working and facilitates learning into practice. There is nevertheless a reported lack of a standardised and cohesive approach across healthcare organisations. The aim of this systematic mapping review was to explore and map the current evidence base for in-situ interventions, identify gaps in the literature and inform future research and evaluation questions. METHODS: A systematic mapping review of published in-situ simulation literature was conducted. Searches were conducted on MEDLINE, EMBASE, AMED, PsycINFO, CINAHL, MIDIRS and ProQuest databases to identify all relevant literature from inception to October 2020. Relevant papers were retrieved, reviewed and extracted data were organised into broad themes. RESULTS: Sixty-nine papers were included in the mapping review. In-situ simulation is used 1) as an assessment tool; 2) to assess and promote system readiness and safety cultures; 3) to improve clinical skills and patient outcomes; 4) to improve non-technical skills (NTS), knowledge and confidence. Most studies included were observational and assessed individual, team or departmental performance against clinical standards. There was considerable variation in assessment methods, length of study and the frequency of interventions. CONCLUSIONS: This mapping highlights various in-situ simulation approaches designed to address a range of objectives in healthcare settings; most studies report in-situ simulation to be feasible and beneficial in addressing various learning and improvement objectives. There is a lack of consensus for implementing and evaluating in-situ simulation and further studies are required to identify potential benefits and impacts on patient outcomes. In-situ simulation studies need to include detailed demographic and contextual data to consider transferability across care settings and teams and to assess possible confounding factors. Valid and reliable data collection tools should be developed to capture the complexity of team and individual performance in real settings. Research should focus on identifying the optimal frequency and length of in-situ simulations to improve outcomes and maximize participant experience.


Subject(s)
Clinical Competence , Delivery of Health Care , Humans , Learning
2.
J Clin Invest ; 118(3): 1143-53, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18246203

ABSTRACT

Cross-reactivity of murine and recently human CD8(+) T cells between different viral peptides, i.e., heterologous immunity, has been well characterized. However, the directionality and quality of these cross-reactions is critical in determining their biological importance. Herein we analyzed the response of human CD8(+) T cells that recognize both a hepatitis C virus peptide (HCV-NS3) and a peptide derived from the influenza neuraminidase protein (Flu-NA). To detect the cross-reactive CD8(+) T cells, we used peptide-MHC class I complexes (pMHCs) containing a new mutant form of MHC class I able to bind CD8 more strongly than normal MHC class I complexes. T cell responses against HCV-NS3 and Flu-NA peptide were undetectable in normal donors. In contrast, some responses against the Flu-NA peptide were identified in HCV(+) donors who showed strong HCV-NS3-specific reactivity. The Flu-NA peptide was a weak agonist for CD8(+) T cells in HCV(+) individuals on the basis of novel pMHCs and functional assays. These data support the idea of cross-reactivity between the 2 peptides, but indicate that reactivity toward the Flu-NA peptide is highly CD8-dependent and occurs predominantly after priming during HCV infection. Our findings indicate the utility of the novel pMHCs in dissecting cross-reactivity and suggest that cross-reactivity between HCV and influenza is relatively weak. Further studies are needed to relate affinity and functionality of cross-reactive T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepatitis C/immunology , Orthomyxoviridae/immunology , Cross Reactions , Histocompatibility Antigens Class I/immunology , Humans , Neuraminidase/immunology , Viral Matrix Proteins/immunology , Viral Nonstructural Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...