Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 46(3): 623-631, 2017 May.
Article in English | MEDLINE | ID: mdl-28724108

ABSTRACT

Wildland fire can alter mercury (Hg) cycling on land and in adjacent aquatic environments. In addition to enhancing local atmospheric Hg redeposition, fire can influence terrestrial movement of Hg and other elements into lakes via runoff from burned upland soil. However, the impact of fire on water quality and the accumulation of Hg in fish remain equivocal. We investigated the effects of fire-specifically, a low-severity prescribed fire and moderate-severity wildfire-on young-of-the-year yellow perch () and lake chemistry in a small remote watershed in the Boundary Waters Canoe Area Wilderness in northeastern Minnesota. We used a paired watershed approach: the fire-affected watershed was compared with an adjacent, unimpacted (reference) watershed. Prior to fire, upland organic horizons in the two study watersheds contained 1549 µg Hg m on average. Despite a 19% decrease in upland organic horizon Hg stocks due to the moderate severity wildfire fire, fish Hg accumulation and lake productivity were not affected by fire in subsequent years. Instead, climate and lake water levels were the strongest predictors of lake chemistry and fish responses in our study lakes over 9 yr. Our results suggest that low- to moderate-severity wildland fire does not alter lake productivity or Hg accumulation in young-of-the-year yellow perch in these small, shallow lakes in the northern deciduous and boreal forest region.


Subject(s)
Mercury/analysis , Perches , Water Pollutants, Chemical/analysis , Wildfires , Animals , Fires , Lakes , Minnesota
2.
PLoS One ; 9(2): e86855, 2014.
Article in English | MEDLINE | ID: mdl-24551042

ABSTRACT

Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter - total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r(2) = 0.68; p<0.001), but a linear relation at Fishing Brook was weak (r(2) = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks.


Subject(s)
Mercury/analysis , Soil Pollutants/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geography , Methylmercury Compounds/analysis , New York , Organic Chemicals/analysis , South Carolina , Statistics, Nonparametric
3.
Sci Total Environ ; 409(1): 218-27, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20952047

ABSTRACT

Soils collected in 2004 along two North American continental-scale transects were subjected to geochemical and mineralogical analyses. In previous interpretations of these analyses, data were expressed in weight percent and parts per million, and thus were subject to the effect of the constant-sum phenomenon. In a new approach to the data, this effect was removed by using centered log-ratio transformations to 'open' the mineralogical and geochemical arrays. Multivariate analyses, including principal component and linear discriminant analyses, of the centered log-ratio data reveal the effects of soil-forming processes, including soil parent material, weathering, and soil age, at the continental-scale of the data arrays that were not readily apparent in the more conventionally presented data. Linear discriminant analysis of the data arrays indicates that the majority of the soil samples collected along the transects can be more successfully classified with Level 1 ecological regional-scale classification by the soil geochemistry than soil mineralogy. A primary objective of this study is to discover and describe, in a parsimonious way, geochemical processes that are both independent and inter-dependent and manifested through compositional data including estimates of the elements and corresponding mineralogy.


Subject(s)
Minerals/chemistry , Soil/chemistry , Environmental Monitoring , Geological Phenomena , Minerals/analysis , Multivariate Analysis , North America
4.
Environ Sci Technol ; 44(14): 5371-6, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20553021

ABSTRACT

Within the Boundary Waters Canoe Area Wilderness in northeastern Minnesota, soils were collected from 116 sites in areas of primarily virgin forest with fire-origin stand years (year of last recognizable stand-killing wildfire) that range from the 1759 to 1976. Median concentrations for total mercury in soils for this span of 217 years range from 0.28 +/- 0.088 ppm (1759) to 0.09 +/- 0.047 ppm (1976) for A-horizon soils and from 0.23 +/- 0.062 ppm (1759) to 0.09 +/- 0.018 ppm (1976) for O-horizon soils. A separate study of soils collected from 30 sites within an area that burned in a 2004 wildfire at Voyageurs National Park, northern Minnesota, suggested that high soil burn severity resulted in significant mercury loss from both organic and mineral soils. Integrated data from these two studies and additional regional soil data demonstrate that older forests have progressively higher mercury concentrations in O-horizon soils (r(2) = 0.423) and A-horizon soils (r(2) = 0.456). These results support the hypotheses that an important factor for mercury concentrations in forest soils is time since stand-replacing fire and that high soil burn severity has the potential to reduce the concentration of mercury in burned soils for tens to hundreds of years.


Subject(s)
Fires , Mercury/chemistry , Soil/analysis , Trees , Minnesota , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...