Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 1272, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894523

ABSTRACT

Constraining the response time of the climate system to changes in North Atlantic Deep Water (NADW) formation is fundamental to improving climate and Atlantic Meridional Overturning Circulation predictability. Here we report a new synchronization of terrestrial, marine, and ice-core records, which allows the first quantitative determination of the response time of North Atlantic climate to changes in high-latitude NADW formation rate during the last deglaciation. Using a continuous record of deep water ventilation from the Nordic Seas, we identify a ∼400-year lead of changes in high-latitude NADW formation ahead of abrupt climate changes recorded in Greenland ice cores at the onset and end of the Younger Dryas stadial, which likely occurred in response to gradual changes in temperature- and wind-driven freshwater transport. We suggest that variations in Nordic Seas deep-water circulation are precursors to abrupt climate changes and that future model studies should address this phasing.

2.
Nat Commun ; 6: 8611, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26497389

ABSTRACT

The origin of two large peaks in the atmospheric radiocarbon ((14)C) concentration at AD 774/5 and 993/4 is still debated. There is consensus, however, that these features can only be explained by an increase in the atmospheric (14)C production rate due to an extraterrestrial event. Here we provide evidence that these peaks were most likely produced by extreme solar events, based on several new annually resolved (10)Be measurements from both Arctic and Antarctic ice cores. Using ice core (36)Cl data in pair with (10)Be, we further show that these solar events were characterized by a very hard energy spectrum with high fluxes of solar protons with energy above 100 MeV. These results imply that the larger of the two events (AD 774/5) was at least five times stronger than any instrumentally recorded solar event. Our findings highlight the importance of studying the possibility of severe solar energetic particle events.

SELECTION OF CITATIONS
SEARCH DETAIL
...