Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Dermatol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591490

ABSTRACT

BACKGROUND: PRDM12 polyalanine tract expansions cause two different disorders; Midfacial Toddler Excoriation Syndrome (MiTES) - itch with normal pain sensation associated with homozygous 18 alanines (18A), and congenital insensitivity to pain (CIP) with normal itch with homozygous 19A. Knowledge of the phenotype, genotype, and disease mechanism of MiTES is incomplete. Why PRDM12 18A versus 19A can cause almost opposite phenotypes is unknown; no other poly-alanine or poly-glutamine tract expansion disease causes two such disparate phenotypes. METHODS: We assessed the genotype and phenotype of 9 new, 9 atypical, and 6 previously reported patients diagnosed with MiTES. Using cell lines with homozygous PRDM12 of 12A (normal), 18A (MiTES) and 19A (CIP) we examined PRDM12 aggregation and subcellular localisation by image separation confocal microscopy and sub-cellular fractionation western blotting. RESULTS: MiTES presents in the first year of life, and in all cases the condition regresses over the first decade leaving scarring. The MiTES phenotype is highly distinctive. Features overlapping with PRDM12-CIP are rarely found. The genotype-phenotype study of PRDM12 polyalanine tract shows that 7A -15A are normal; 16A -18A are associated with MiTES; 19A leads to CIP; and no clinically atypical MiTES cases had an expansion. PRDM12 aggregation and sub-cellular localisation differ significantly between 18A and normal 12A cell lines and between 18A and 19A cell lines. MiTES is a new protein aggregation disease. CONCLUSION: We provide diagnostic criteria for MiTES, and improved longitudinal data. MiTES and CIP are distinct phenotypes despite their genotypes varying by a single alanine in the PRDM12 polyalanine tract. We found clear distinctions between the cellular phenotypes of normal, MiTES and CIP cells.. We hypothesise that the developmental environment of the trigeminal ganglion is unique and critically sensitive to prenatal and postnatal levels of PRDM12.

2.
Brain ; 145(10): 3637-3653, 2022 10 21.
Article in English | MEDLINE | ID: mdl-34957475

ABSTRACT

Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial electromyography (n = 3 CIP participants and n = 8 healthy controls), we found that these patients also have abnormalities in the encoding of affective touch, which is mediated by the specialized afferents C-low threshold mechanoreceptors (C-LTMRs). In the mouse, we found that C-LTMRs express high levels of Nav1.7. Genetic loss or selective pharmacological inhibition of Nav1.7 in C-LTMRs resulted in a significant reduction in the total sodium current density, an increased mechanical threshold and reduced sensitivity to non-noxious cooling. The behavioural consequence of loss of Nav1.7 in C-LTMRs in mice was an elevation in the von Frey mechanical threshold and less sensitivity to cooling on a thermal gradient. Nav1.7 is therefore not only essential for normal pain perception but also for normal C-LTMR function, cool sensitivity and affective touch.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Pain Insensitivity, Congenital , Animals , Humans , Mice , Mechanoreceptors , NAV1.7 Voltage-Gated Sodium Channel/genetics , Pain Insensitivity, Congenital/genetics , Sodium
3.
Am J Med Genet A ; 185(12): 3740-3753, 2021 12.
Article in English | MEDLINE | ID: mdl-34331327

ABSTRACT

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is caused by de novo loss-of-function variants in the SON gene (MIM #617140). This multisystemic disorder is characterized by intellectual disability, seizures, abnormal brain imaging, variable dysmorphic features, and various congenital anomalies. The wide application and increasing accessibility of whole exome sequencing (WES) has helped to identify new cases of ZTTK syndrome over the last few years. To date, there have been approximately 45 cases reported in the literature. Here, we describe 15 additional individuals with variants in the SON gene, including those with missense variants bringing the total number of known cases to 60. We have reviewed the clinical and molecular data of these new cases and all previously reported cases to further delineate the most common as well as emerging clinical findings related to this syndrome. Furthermore, we aim to delineate any genotype-phenotype correlations specifically for a recurring pathogenic four base pair deletion (c.5753_5756del) along with discussing the impact of missense variants seen in the SON gene.


Subject(s)
Congenital Abnormalities/genetics , DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Minor Histocompatibility Antigens/genetics , Seizures/genetics , Brain/diagnostic imaging , Brain/pathology , Congenital Abnormalities/diagnosis , Congenital Abnormalities/pathology , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Male , Mutation, Missense/genetics , Phenotype , Seizures/diagnosis , Seizures/pathology , Exome Sequencing
5.
Trends Mol Med ; 12(8): 358-66, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16829198

ABSTRACT

Autosomal recessive primary microcephaly (MCPH) is a neuro-developmental disorder that causes a great reduction in brain growth in utero. MCPH is hypothesized to be a primary disorder of neurogenic mitosis, leading to reduced neuron number. Hence, MCPH proteins are likely to be important components of cellular pathways regulating human brain size. At least six genes can cause this disorder and four of these have recently been identified: autosomal recessive primary microcephaly 1 (MCPH1), abnormal spindle-like, microcephaly associated (ASPM), cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) and centromere protein J (CENPJ). Whereas aberration of ASPM is the most common cause of MCPH, MCPH1 patients can be more readily diagnosed by the finding of increased numbers of "prophase-like cells" on routine cytogenetic investigation. Three MCPH proteins are centrosomal components but have apparently diverse roles that affect mitosis. There is accumulating evidence that evolutionary changes to the MCPH genes have contributed to the large brain size seen in primates, particularly humans. The aim of this article is to review what has been learnt about the rare condition primary microcephaly and the information this provides about normal brain growth.


Subject(s)
Brain/growth & development , Microcephaly/physiopathology , Animals , Brain/metabolism , Cell Cycle Proteins , Cytoskeletal Proteins , Genes, Recessive/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/physiology , Microcephaly/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/physiology , Models, Biological , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology
6.
Am J Hum Genet ; 73(3): 656-62, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12917796

ABSTRACT

Joubert syndrome (JS) is an autosomal recessive developmental brain condition characterized by hypoplasia/dysplasia of the cerebellar vermis and by ataxia, hypotonia, oculomotor apraxia, and neonatal breathing dysregulation. A form of JS that includes retinal dysplasia and cystic dysplastic kidneys has been differentiated from other forms of JS, called either "JS type B" or "cerebello-oculo-renal syndrome" (CORS), but the genetic basis of this condition is unknown. Here, we describe three consanguineous families that display CORS. Linkage analysis defines a novel locus on chromosome 11p12-q13.3, with a maximum two-point LOD score of Z=5.2 at the marker D11S1915. Therefore, the cerebello-oculo-renal form of JS is a distinct genetic entity from the Joubert syndrome 1 (JBTS1) locus described elsewhere, in which there is minimal involvement of retina or kidney. We suggest the term "CORS2" for this new locus.


Subject(s)
Brain/abnormalities , Cerebellum/abnormalities , Chromosomes, Human, Pair 11 , Kidney Diseases, Cystic/genetics , Retina/abnormalities , Chromosome Mapping , Female , Genetic Linkage , Humans , Magnetic Resonance Imaging , Male , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...