Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Infect Immun ; 88(11)2020 10 19.
Article in English | MEDLINE | ID: mdl-32839188

ABSTRACT

Recent efforts to develop an enterotoxigenic Escherichia coli (ETEC) vaccine have focused on the antigenically conserved tip adhesins of colonization factors. We showed previously that intranasal immunization with dsc19CfaE, a soluble variant of the in cis donor strand-complemented tip adhesin of a colonization factor of the class 5 family (CFA/I) fimbria, is highly immunogenic and protects against oral challenge with CFA/I-positive (CFA/I+) ETEC strain H10407 in the Aotus nancymaae nonhuman primate. We also reported a cholera toxin (CT)-like chimera (called dsc19CfaE-CTA2/CTB) in which the CTA1 domain of CT was replaced by dsc19CfaE that was strongly immunogenic when administered intranasally or orogastrically in mice. Here, we evaluate the immunogenicity and protective efficacy (PE) of a refined and more stable chimera comprised of a pentameric B subunit of ETEC heat-labile toxin (LTB) in lieu of the CTB pentamer and a donor strand truncation (dsc14) of CfaE. The refined chimera, dsc14CfaE-sCTA2/LTB, was highly immunogenic in mice when administered intranasally or intradermally, eliciting serum and fecal antibody responses against CfaE and LTB, as well as strong hemagglutination inhibition titers, a surrogate for neutralization of intestinal adhesion mediated by CfaE. Moreover, the chimera was safe and highly immunogenic when administered intradermally to guinea pigs. In A. nancymaae, intradermal (i.d.) immunization with chimera plus single-mutant heat-labile toxin [LT(R192G)] elicited strong serum anti-CfaE and anti-LTB antibody responses and conferred significant reduction of diarrhea compared to phosphate-buffered saline (PBS) controls (PE = 84.1%; P < 0.02). These data support the further evaluation of dsc14CfaE-sCTA2/LTB as an ETEC vaccine in humans.


Subject(s)
Adhesins, Escherichia coli/immunology , Cholera Toxin/immunology , Escherichia coli Infections/immunology , Escherichia coli Vaccines/immunology , Animals , Aotidae , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Guinea Pigs , Mice , Recombinant Fusion Proteins/immunology
2.
Nat Commun ; 10(1): 4328, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31551421

ABSTRACT

Transmission-blocking vaccines have the potential to be key contributors to malaria elimination. Such vaccines elicit antibodies that inhibit parasites during their development in Anopheles mosquitoes, thus breaking the cycle of transmission. To date, characterization of humoral responses to Plasmodium falciparum transmission-blocking vaccine candidate Pfs25 has largely been conducted in pre-clinical models. Here, we present molecular analyses of human antibody responses generated in a clinical trial evaluating Pfs25 vaccination. From a collection of monoclonal antibodies with transmission-blocking activity, we identify the most potent transmission-blocking antibody yet described against Pfs25; 2544. The interactions of 2544 and three other antibodies with Pfs25 are analyzed by crystallography to understand structural requirements for elicitation of human transmission-blocking responses. Our analyses provide insights into Pfs25 immunogenicity and epitope potency, and detail an affinity maturation pathway for a potent transmission-blocking antibody in humans. Our findings can be employed to guide the design of improved malaria transmission-blocking vaccines.


Subject(s)
Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Antibodies, Protozoan/chemistry , Antibody Formation , Binding Sites, Antibody , Crystallography, X-Ray , Humans , Malaria, Falciparum/transmission , Protozoan Proteins/chemistry
3.
Vaccine ; 37(42): 6134-6138, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31492474

ABSTRACT

dscCfaE is a recombinant form of the CFA/I tip adhesin CfaE, expressed by a large proportion of enterotoxigenic E. coli (ETEC). It is highly immunogenic by the intranasal route in mice and Aotus nancymaae, protective against challenge with CFA/I+ ETEC in an A. nancymaae challenge model, and antibodies to dscCfaE passively protect against CFA/I+ ETEC challenge in human volunteers. Here, we show that transcutaneous immunization (TCI) with dscCfaE in mice resulted in strong anti-CfaE IgG serum responses, with a clear dose-response effect. Co-administration with heat-labile enterotoxin (LT) resulted in enhanced immune responses over those elicited by dscCfaE alone and strong anti-LT antibody responses. The highest dose of dscCfaE administered transcutaneously with LT elicited strong HAI titers, a surrogate for the neutralization of intestinal adhesion. Fecal anti-adhesin IgG and IgA antibody responses were also induced. These findings support the feasibility of TCI for the application of an adhesin-toxin based ETEC vaccine.


Subject(s)
Bacterial Toxins/immunology , Enterotoxigenic Escherichia coli/immunology , Enterotoxins/immunology , Escherichia coli Proteins/immunology , Escherichia coli Vaccines/immunology , Fimbriae Proteins/immunology , Vaccination/methods , Adhesins, Escherichia coli/immunology , Administration, Cutaneous , Animals , Female , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology
4.
J Infect Dis ; 220(3): 505-513, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30897198

ABSTRACT

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) commonly cause diarrhea in children living in developing countries and in travelers to those regions. ETEC are characterized by colonization factors (CFs) that mediate intestinal adherence. We assessed if bovine colostral IgG (bIgG) antibodies against a CF, CS17, or antibodies against CsbD, the minor tip subunit of CS17, would protect subjects against diarrhea following challenge with a CS17-expressing ETEC strain. METHODS: Adult subjects were randomized (1:1:1) to receive oral bIgG against CS17, CsbD, or placebo. Two days prior to challenge, subjects began dosing 3 times daily with the bIgG products (or placebo). On day 3, subjects ingested 5 × 109 cfu ETEC strain LSN03-016011/A in buffer. Subjects were assessed for diarrhea for 120 hours postchallenge. RESULTS: A total of 36 subjects began oral prophylaxis and 35 were challenged with ETEC. While 50.0% of the placebo recipients had watery diarrhea, none of the subjects receiving anti-CS17 had diarrhea (P = .01). In contrast, diarrhea rates between placebo and anti-CsbD recipients (41.7%) were comparable (P = 1.0). CONCLUSIONS: This is the first study to demonstrate anti-CS17 antibodies provide significant protection against ETEC expressing CS17. More research is needed to better understand why anti-CsbD was not comparably efficacious. Clinical Trials Registration. NCT00524004.


Subject(s)
Antibodies, Bacterial/immunology , Colostrum/immunology , Diarrhea/immunology , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Vaccines/immunology , Protective Agents/pharmacology , Adhesins, Bacterial/immunology , Adult , Animals , Bacterial Toxins/immunology , Cattle , Colostrum/microbiology , Diarrhea/microbiology , Double-Blind Method , Enterotoxins/immunology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/immunology , Female , Humans , Immunoglobulin G/immunology , Male
5.
J Infect Dis ; 216(1): 7-13, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28541500

ABSTRACT

Background: Tip-localized adhesive proteins of bacterial fimbriae from diverse pathogens confer protection in animal models, but efficacy in humans has not been reported. Enterotoxigenic Escherichia coli (ETEC) commonly elaborate colonization factors comprising a minor tip adhesin and major stalk-forming subunit. We assessed the efficacy of antiadhesin bovine colostral IgG (bIgG) antibodies against ETEC challenge in volunteers. Methods: Adults were randomly assigned (1:1:1) to take oral hyperimmune bIgG raised against CFA/I minor pilin subunit (CfaE) tip adhesin or colonization factor I (CFA/I) fimbraie (positive control) or placebo. Two days before challenge, volunteers began a thrice-daily, 7-day course of investigational product administered in sodium bicarbonate 15 minutes after each meal. On day 3, subjects drank 1 × 109 colony-forming units of colonization factor I (CFA/I)-ETEC strain H10407 with buffer. The primary efficacy endpoint was diarrhea within 120 hours of challenge. Results: After enrollment and randomization, 31 volunteers received product, underwent ETEC challenge, and were included in the per protocol efficacy analysis. Nine of 11 placebos developed diarrhea, 7 experiencing moderate to severe disease. Protective efficacy of 63% (P = .03) and 88% (P = .002) was observed in the antiadhesin bIgG and positive control groups, respectively. Conclusions: Oral administration of anti-CFA/I minor pilin subunit (CfaE) antibodies conferred significant protection against ETEC, providing the first clinical evidence that fimbrial tip adhesins function as protective antigens.


Subject(s)
Antibodies, Bacterial/therapeutic use , Colostrum/immunology , Diarrhea/drug therapy , Enterotoxigenic Escherichia coli , Escherichia coli Infections/drug therapy , Immunoglobulin G/therapeutic use , Adhesins, Bacterial/immunology , Administration, Oral , Adult , Animals , Antigens, Bacterial/immunology , Cattle , Colony Count, Microbial , Diarrhea/microbiology , Double-Blind Method , Female , Fimbriae Proteins/immunology , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Humans , Male , Reproducibility of Results , Young Adult
6.
J Infect Dis ; 213(11): 1743-51, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26908756

ABSTRACT

BACKGROUND: Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. METHODS: Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. RESULTS: FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. CONCLUSIONS: FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. CLINICAL TRIALS REGISTRATION: NCT02044198.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adult , Enzyme-Linked Immunospot Assay , Erythrocytes/parasitology , Female , Humans , Immunogenicity, Vaccine , Life Cycle Stages , Malaria, Falciparum/parasitology , Male , Middle Aged , Models, Biological , Plasmodium falciparum/physiology , Young Adult
7.
Vaccine ; 34(2): 284-291, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26597148

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) are the most common cause of bacterial diarrhea in young children in developing countries and in travelers. Efforts to develop an ETEC vaccine have intensified in the past decade, and intestinal colonization factors (CFs) are somatic components of most investigational vaccines. CFA/I and related Class 5 fimbrial CFs feature a major stalk-forming subunit and a minor, antigenically conserved tip adhesin. We hypothesized that the tip adhesin is critical for stimulating antibodies that specifically inhibit ETEC attachment to the small intestine. To address this, we compared the capacity of donor strand complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, and CFA/I fimbriae to elicit anti-adhesive antibodies in mice, using hemagglutination inhibition (HAI) as proxy for neutralization of intestinal adhesion. When given with genetically attenuated heat-labile enterotoxin LTR192G as adjuvant by intranasal (IN) or orogastric (OG) vaccination, dscCfaE exceeded CFA/I fimbriae in eliciting serum HAI titers and anti-CfaE antibody titers. Based on these findings, we vaccinated Aotus nancymaae nonhuman primates (NHP) with dscCfaE alone or admixed with one of two adjuvants, LTR192G and cholera toxin B-subunit, by IN and OG administration. Only IN vaccination with dscCfaE with either adjuvant elicited substantial serum HAI titers and IgA and IgG anti-adhesin responses, with the latter detectable a year after vaccination. In conclusion, we have shown that dscCfaE elicits robust HAI and anti-adhesin antibody responses in both mice and NHPs when given with adjuvant by IN vaccination, encouraging further evaluation of an ETEC adhesin-based vaccine approach.


Subject(s)
Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Proteins/immunology , Escherichia coli Vaccines/immunology , Fimbriae Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Administration, Oral , Animals , Antibodies, Bacterial/blood , Aotidae , Disease Models, Animal , Escherichia coli Vaccines/administration & dosage , Hemagglutination Inhibition Tests , Immunoglobulin A/blood , Immunoglobulin G/blood , Mice, Inbred BALB C , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
8.
Vaccine ; 32(43): 5531-9, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25077422

ABSTRACT

New interventions are needed to reduce morbidity and mortality associated with malaria, as well as to accelerate elimination and eventual eradication. Interventions that can break the cycle of parasite transmission, and prevent its reintroduction, will be of particular importance in achieving the eradication goal. In this regard, vaccines that interrupt malaria transmission (VIMT) have been highlighted as an important intervention, including transmission-blocking vaccines that prevent human-to-mosquito transmission by targeting the sexual, sporogonic, or mosquito stages of the parasite (SSM-VIMT). While the significant potential of this vaccine approach has been appreciated for decades, the development and licensure pathways for vaccines that target transmission and the incidence of infection, as opposed to prevention of clinical malaria disease, remain ill-defined. This article describes the progress made in critical areas since 2010, highlights key challenges that remain, and outlines important next steps to maximize the potential for SSM-VIMTs to contribute to the broader malaria elimination and eradication objectives.


Subject(s)
Biomedical Research/trends , Malaria Vaccines , Malaria/prevention & control , Animals , Culicidae/parasitology , Humans , Insect Vectors/parasitology , Malaria/transmission
10.
Vaccine ; 29(47): 8487-9, 2011 Nov 03.
Article in English | MEDLINE | ID: mdl-21939714

ABSTRACT

Accurately assessing mucosal immune responses to candidate vaccines remains a technical challenge. ELISPOT is widely used as a surrogate of mucosal immune response by directly enumerating circulating antibody secreting cells (ASCs), while antibody in lymphocyte supernatant (ALS) titers the total amount of antibody secreted by ASC ex vivo using ELISA. ALS is more practical than ELISPOT because the ASC supernatant is frozen for ELISA that can be conducted at any time, with any antigen, and in any laboratory. We compared IgA and IgG responses to serotype-specific Shigella LPS using ELISPOT and ALS in subjects following vaccination or infection with Shigella. ALS results correlated well with ELISPOT results, and the ALS method was both sensitive and specific for the detection of antibody responses against Shigella LPS. Based on these observations, the ALS assay is a practical and flexible alternative to ELISPOT for measuring mucosal IgA responses to Shigella LPS antigen.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Clinical Laboratory Techniques/methods , Immunity, Mucosal , Lymphocytes/immunology , Shigella/immunology , Humans , Immunoenzyme Techniques/methods , Immunoglobulin A/analysis , Immunoglobulin G/analysis
11.
J Infect Dis ; 204(1): 60-4, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21628659

ABSTRACT

Human challenges with enterotoxigenic Escherichia coli (ETEC) have broadened our understanding of this important enteropathogen. We report findings from the first challenge studies using ETEC-expressing colonization factor fimbria CS17 and CS19. LSN03-016011/A (LT, CS17) elicited a dose-dependent effect, with the upper dose (6 × 10(9) organisms) causing diarrhea in 88% of recipients. WS0115A (LTSTp, CS19) also showed a dose response, with a 44% diarrhea rate at 9 × 10(9) organisms. Both strains elicited homologous antifimbrial and anti-LT antibody seroconversion. These studies establish the relative pathogenicity of ETEC expressing newer class 5 fimbriae and suggest suitability of the LT|CS17-ETEC challenge model for interventional trials.


Subject(s)
Adhesins, Bacterial/biosynthesis , Enterotoxigenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli Proteins/biosynthesis , Virulence Factors/biosynthesis , Adhesins, Bacterial/immunology , Adolescent , Adult , Antibodies, Bacterial/blood , Bacterial Toxins/immunology , Diarrhea/microbiology , Diarrhea/pathology , Enterotoxigenic Escherichia coli/growth & development , Enterotoxins/immunology , Escherichia coli Proteins/immunology , Female , Human Experimentation , Humans , Male , Middle Aged , Virulence Factors/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...