Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chem ; 9(8): 2298-3317, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37790656

ABSTRACT

Dithioalkylidenes are a newly-developed class of conjugate acceptors that undergo thiol exchange via an associative mechanism, enabling decoupling of key material properties for sustainability, biomedical, and sensing applications. Here, we show that the exchange rate is highly sensitive to the structure of the acceptor and tunable over four orders of magnitude in aqueous environments. Cyclic acceptors exchange rapidly, from 0.95 to 15.6 M-1s-1, while acyclic acceptors exchange between 3.77x10-3 and 2.17x10-2 M-1s-1. Computational, spectroscopic, and structural data suggest that cyclic acceptors are more reactive than their acyclic counterparts because of resonance stabilization of the tetrahedral exchange intermediate. We parametrize molecular reactivity with respect to computed descriptors of the electrophilic site and leverage this insight to design a compound with intermediate characteristics. Lastly, we incorporate this dynamic bond into hydrogels and demonstrate that the characteristic stress relaxation time (τ) is directly proportional to molecular kex.

3.
J Am Chem Soc ; 143(44): 18755-18765, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34699721

ABSTRACT

π-Conjugated polymers can serve as active layers in flexible and lightweight electronics and are conventionally synthesized by transition-metal-mediated polycondensation at elevated temperatures. We recently reported a photopolymerization of electron-deficient heteroaryl Grignard monomers that enables the catalyst-free synthesis of n-type π-conjugated polymers. Herein, we describe an experimental and computational investigation into the mechanism of this photopolymerization. Spectroscopic studies performed in situ and after quenching reveal that the propagating chain is a radical anion with halide end groups. DFT calculations for model oligomers suggest a Mg-templated SRN1-type coupling, in which Grignard monomer coordination to the radical anion chain avoids the formation of free sp2 radicals and allows C-C bond formation with very low barriers. We find that light plays an unusual role in the reaction, photoexciting the radical anion chain to shift electron density to the termini and thus enabling productive monomer binding.

4.
Nano Lett ; 21(1): 854-860, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33395307

ABSTRACT

This paper describes reversible "on-off" switching of the photoluminescence (PL) intensity of CdSe quantum dots (QDs), mediated by photochromic furylfulgide carboxylate (FFC) molecules chemisorbed to the surfaces of the QDs. Repeated cycles of UV and visible illumination switch the FFC between "closed" and "open" isomers. Reversible switching of the QDs' PL intensity by >80% is enabled by different rates and yields of PL-quenching photoinduced electron transfer (PET) from the QDs to the respective isomers. This difference is consistent with cyclic voltammetry measurements and density functional calculations of the isomers' frontier orbital energies. This work demonstrates fatigue-resistant modulation of the PL of a QD-molecule complex through remote control of PET. Such control potentially enables applications, such as all-optical memory, sensing, and imaging, that benefit from a fast, tunable, and reversible response to light stimuli.

5.
Angew Chem Int Ed Engl ; 59(15): 6062-6067, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-31922643

ABSTRACT

Current approaches to synthesize π-conjugated polymers (CPs) are dominated by thermally driven, transition-metal-mediated reactions. Herein we show that electron-deficient Grignard monomers readily polymerize under visible-light irradiation at room temperature in the absence of a catalyst. The product distribution can be tuned by the wavelength of irradiation based on the absorption of the polymer. Conversion studies are consistent with an uncontrolled chain-growth process; correspondingly, chain extension produces all-conjugated n-type block copolymers. Preliminary results demonstrate that the polymerization can be expanded to donor-acceptor alternating copolymers. We anticipate that this method can serve as a platform to access new architectures of n-type CPs without the need for transition-metal catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...