Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
2.
Nature ; 623(7985): 157-166, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853118

ABSTRACT

Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).


Subject(s)
Brain Neoplasms , Glioblastoma , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Glioblastoma/immunology , Glioblastoma/pathology , Nestin/genetics , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Viruses/physiology , Reproducibility of Results , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Treatment Outcome , Tumor Microenvironment/immunology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology
3.
Neurooncol Adv ; 5(1): vdac182, 2023.
Article in English | MEDLINE | ID: mdl-36926246

ABSTRACT

Background: Pediatric low-grade gliomas (pLGGs) are the most common central nervous system tumor in children, characterized by RAS/MAPK pathway driver alterations. Genomic advances have facilitated the use of molecular targeted therapies, however, their long-term impact on tumor behavior remains critically unanswered. Methods: We performed an IRB-approved, retrospective chart and imaging review of pLGGs treated with off-label targeted therapy at Dana-Farber/Boston Children's from 2010 to 2020. Response analysis was performed for BRAFV600E and BRAF fusion/duplication-driven pLGG subsets. Results: Fifty-five patients were identified (dabrafenib n = 15, everolimus n = 26, trametinib n = 11, and vemurafenib n = 3). Median duration of targeted therapy was 9.48 months (0.12-58.44). The 1-year, 3-year, and 5-year EFS from targeted therapy initiation were 62.1%, 38.2%, and 31.8%, respectively. Mean volumetric change for BRAFV600E mutated pLGG on BRAF inhibitors was -54.11%; median time to best volumetric response was 8.28 months with 9 of 12 (75%) objective RAPNO responses. Median time to largest volume post-treatment was 2.86 months (+13.49%); mean volume by the last follow-up was -14.02%. Mean volumetric change for BRAF fusion/duplication pLGG on trametinib was +7.34%; median time to best volumetric response was 6.71 months with 3 of 7 (43%) objective RAPNO responses. Median time to largest volume post-treatment was 2.38 months (+71.86%); mean volume by the last follow-up was +39.41%. Conclusions: Our integrated analysis suggests variability in response by pLGG molecular subgroup and targeted therapy, as well as the transience of some tumor growth following targeted therapy cessation.

4.
Clin Cancer Res ; 29(14): 2651-2667, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36780194

ABSTRACT

PURPOSE: Anaplastic lymphoma kinase (ALK) aberrations have been identified in pediatric-type infant gliomas, but their occurrence across age groups, functional effects, and treatment response has not been broadly established. EXPERIMENTAL DESIGN: We performed a comprehensive analysis of ALK expression and genomic aberrations in both newly generated and retrospective data from 371 glioblastomas (156 adult, 205 infant/pediatric, and 10 congenital) with in vitro and in vivo validation of aberrations. RESULTS: ALK aberrations at the protein or genomic level were detected in 12% of gliomas (45/371) in a wide age range (0-80 years). Recurrent as well as novel ALK fusions (LRRFIP1-ALK, DCTN1-ALK, PRKD3-ALK) were present in 50% (5/10) of congenital/infant, 1.4% (3/205) of pediatric, and 1.9% (3/156) of adult GBMs. ALK fusions were present as the only candidate driver in congenital/infant GBMs and were sometimes focally amplified. In contrast, adult ALK fusions co-occurred with other oncogenic drivers. No activating ALK mutations were identified in any age group. Novel and recurrent ALK rearrangements promoted STAT3 and ERK1/2 pathways and transformation in vitro and in vivo. ALK-fused GBM cellular and mouse models were responsive to ALK inhibitors, including in patient cells derived from a congenital GBM. Relevant to the treatment of infant gliomas, we showed that ALK protein appears minimally expressed in the forebrain at perinatal stages, and no gross effects on perinatal brain development were seen in pregnant mice treated with the ALK inhibitor ceritinib. CONCLUSIONS: These findings support use of brain-penetrant ALK inhibitors in clinical trials across infant, pediatric, and adult GBMs. See related commentary by Mack and Bertrand, p. 2567.


Subject(s)
Glioblastoma , Glioma , Mice , Animals , Anaplastic Lymphoma Kinase/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Retrospective Studies , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Glioma/drug therapy
7.
Cerebellum ; 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36190676

ABSTRACT

Multiple system atrophy (MSA) is a fatal neurodegenerative disease of unknown etiology characterized by widespread aggregation of the protein alpha-synuclein in neurons and glia. Its orphan status, biological relationship to Parkinson's disease (PD), and rapid progression have sparked interest in drug development. One significant obstacle to therapeutics is disease heterogeneity. Here, we share our process of developing a clinical trial-ready cohort of MSA patients (69 patients in 2 years) within an outpatient clinical setting, and recruiting 20 of these patients into a longitudinal "n-of-few" clinical trial paradigm. First, we deeply phenotype our patients with clinical scales (UMSARS, BARS, MoCA, NMSS, and UPSIT) and tests designed to establish early differential diagnosis (including volumetric MRI, FDG-PET, MIBG scan, polysomnography, genetic testing, autonomic function tests, skin biopsy) or disease activity (PBR06-TSPO). Second, we longitudinally collect biospecimens (blood, CSF, stool) and clinical, biometric, and imaging data to generate antecedent disease-progression scores. Third, in our Mass General Brigham SCiN study (stem cells in neurodegeneration), we generate induced pluripotent stem cell (iPSC) models from our patients, matched to biospecimens, including postmortem brain. We present 38 iPSC lines derived from MSA patients and relevant disease controls (spinocerebellar ataxia and PD, including alpha-synuclein triplication cases), 22 matched to whole-genome sequenced postmortem brain. iPSC models may facilitate matching patients to appropriate therapies, particularly in heterogeneous diseases for which patient-specific biology may elude animal models. We anticipate that deeply phenotyped and genotyped patient cohorts matched to cellular models will increase the likelihood of success in clinical trials for MSA.

8.
Mod Pathol ; 35(12): 1770-1774, 2022 12.
Article in English | MEDLINE | ID: mdl-36057740

ABSTRACT

Central nervous system (CNS) germ cell tumors (GCTs) represent 2-3% of all primary CNS tumors. The majority are germinomas, which are radiosensitive and have an excellent prognosis. Contrarily, CNS non-germinomatous GCTs (NGGCTs) have less favorable prognosis and require more aggressive treatment. The expression of checkpoint/immune markers in CNS GCTs, particularly NGGCTs, is unknown. We previously reported a case of a patient whose intracranial NGGCT (predominantly choriocarcinoma) responded to immune checkpoint inhibition therapy. This case led us to evaluate our archive of intracranial GCTs for expression of PD-L1 and PD-1. With IRB approval, we searched the pathology archives at our institution for CNS GCTs. Demographic, radiologic, clinical, and histologic information was extracted from the medical records. Immunohistochemistry for lymphocytic markers (CD4, CD8, CD20), PD-1, and PD-L1 was performed. PD-L1 was considered positive if greater than 1% of tumor cells were positive and PD-1 was reported as a percentage of positive inflammatory cells. Fifty cases were identified, including 28 germinomas (mean age at diagnosis: 15.5 years; 17 males, 11 females), and 22 NGGCTs (mean age at diagnosis: 12.0 years, 21 males, 1 female). Germinomas were mostly suprasellar (17/28) and NGGCTs were predominantly pineal (17/22). Twenty-two germinomas (79%) were positive for PD-L1 expression, and 13 NGGCTs (57%) were positive for PD-L1. Cases of choriocarcinoma showed the most diffuse PD-L1 expression. PD-1 expression was seen in lymphocytes among 27/28 of the germinomas and 20/23 of the NGGCTs (ranging from 1-40% of lymphocytes). As expected, larger quantities of inflammatory cells were present in cases of germinoma. We demonstrate immune activity in CNS GCTs, and our results suggest that immune checkpoint inhibitors may be efficacious in the treatment of intracranial GCTs. Among NGGCTs, cases of choriocarcinoma showed the highest expression of PD-L1 in tumor cells, suggesting that this subtype may have the greatest benefit from checkpoint blockade.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Choriocarcinoma , Germinoma , Neoplasms, Germ Cell and Embryonal , Child , Male , Humans , Female , Adolescent , Programmed Cell Death 1 Receptor , B7-H1 Antigen , Germinoma/pathology , Brain Neoplasms/pathology , Central Nervous System Neoplasms/pathology , Central Nervous System/pathology
10.
J Neuropathol Exp Neurol ; 80(7): 705-712, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34363676

ABSTRACT

The unintended neurologic sequelae of chemotherapy contribute to significant patient morbidity. Chemotherapy-related cognitive impairment (CRCI) is observed in up to 80% of cancer patients treated with chemotherapy and involves multiple cognitive domains including executive functioning. The pathophysiology underlying CRCI and the neurotoxicity of chemotherapy is incompletely understood, but oxidative stress and DNA damage are highly plausible mechanisms based on preclinical data. Unfortunately, validating pathways relevant to CRCI in humans is limited by an absence of relevant neuropathologic studies of patient brain tissue. In the present study, we stained sections of frontal lobe autopsy tissue from cancer patients treated with chemotherapy (n = 15), cancer patients not treated with chemotherapy (n = 10), and patients without history of cancer (n = 10) for markers of oxidative stress (nitrotyrosine, 4-hydroxynonenal) and DNA damage (pH2AX, pATM). Cancer patients treated with chemotherapy had increased staining for markers of oxidative stress and DNA damage in frontal lobe cortical neurons compared to controls. We detected no statistically significant difference in oxidative stress and DNA damage by the duration between last administration of chemotherapy and death. The study highlights the potential relevance of oxidative stress and DNA damage in the pathophysiology of CRCI and the neurotoxicity of chemotherapy.


Subject(s)
Chemotherapy-Related Cognitive Impairment/metabolism , DNA Damage , Neurons/metabolism , Oxidative Stress , Aged , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Chemotherapy-Related Cognitive Impairment/genetics , Chemotherapy-Related Cognitive Impairment/pathology , Female , Humans , Male , Middle Aged
12.
Nutr Healthy Aging ; 4(2): 169-179, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28447071

ABSTRACT

BACKGROUND: Rpd3 is a conserved histone deacetylase that removes acetyl groups from lysine residues within histones and other proteins. Reduction or inhibition of Rpd3 extends longevity in yeast, worms, and flies. Previous studies in flies suggest an overlap with the mechanism of lifespan extension by dietary restriction. However, the mechanism of rpd3's effects on longevity remains unclear. OBJECTIVES: In this study we investigated how rpd3 reduction affects fly spontaneous physical activity, fecundity, and stress resistance. METHODS: We examined the effects of rpd3 reduction on fly spontaneous physical activity by using population monitors, we determined female fecundity by counting daily egg laying, and we determined fly survivorship in response to starvation and paraquat. RESULTS: In flies, rpd3 reduction increases peak spontaneous physical activity of rpd3 def male flies at a young age but does not affect total 24 hour activity. Male and female rpd3 def mutants are more resistant to starvation on low and high calorie diets. In addition, increased resistance to paraquat was observed in females of one allele. A decrease in rpd3 levels does not affect female fecundity. CONCLUSIONS: A decrease in rpd3 levels mirrors some but not all changes associated with calorie restriction, illustrated by an increased peak of spontaneous activity in rpd3 def /+ heterozygous male flies but no effect on total spontaneous activity and fecundity.

13.
Aging (Albany NY) ; 8(11): 3028-3044, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27852975

ABSTRACT

Histone deacetylase (HDAC) 1 regulates chromatin compaction and gene expression by removing acetyl groups from lysine residues within histones. HDAC1 affects a variety of processes including proliferation, development, metabolism, and cancer. Reduction or inhibition of Rpd3, yeast and fly HDAC1 orthologue, extends longevity. However, the mechanism of rpd3's effects on longevity remains unclear. Here we report an overlap between rpd3 and the Insulin/Insulin-like growth factor signaling (IIS) longevity pathways. We demonstrated that rpd3 reduction downregulates expression of members of the IIS pathway, which is associated with altered metabolism, increased energy storage, and higher resistance to starvation and oxidative stress. Genetic studies support the role of IIS in rpd3 longevity pathway, as illustrated with reduced stress resistance and longevity of flies double mutant for rpd3 and dfoxo, a downstream target of IIS pathway, compared to rpd3 single mutant flies. Our data suggest that increased dfoxo is a mediator of rpd3's effects on fly longevity and intermediary metabolism, and confer a new link between rpd3 and IIS longevity pathways.


Subject(s)
Drosophila Proteins/metabolism , Histone Deacetylase 1/metabolism , Longevity/genetics , Aging/genetics , Animals , Blotting, Western , Down-Regulation , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Forkhead Transcription Factors/metabolism , Gene Expression , Insulin/metabolism , Male , Mutation , Signal Transduction/genetics , Starvation/metabolism
14.
Exp Gerontol ; 86: 124-128, 2016 12 15.
Article in English | MEDLINE | ID: mdl-26927903

ABSTRACT

The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology.


Subject(s)
Drosophila Proteins/physiology , Histone Deacetylase 1/physiology , Longevity/physiology , Aging/physiology , Animals , Diet , Drosophila/genetics , Drosophila/metabolism , Drosophila/physiology , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Epigenesis, Genetic/physiology , Histone Deacetylase 1/deficiency , Histone Deacetylase 1/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/physiology , Sirtuins/physiology
15.
J Vis Exp ; (86)2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24747955

ABSTRACT

Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases.


Subject(s)
Drosophila melanogaster/physiology , Locomotion/physiology , Motor Activity/physiology , Animals , Female , Male , Software
16.
J Chem Neuroanat ; 40(2): 123-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20471470

ABSTRACT

The motivation of songbirds to sing is influenced by two brain regions, the medial preoptic area (POM) and ventral tegmental area (VTA), which are located outside the song control system itself. These areas receive opioidergic innervation. Furthermore, the opioid enkephalin has been proposed to play a role in the reward for singing. In order to determine whether seasonal changes in song output relate to seasonal changes in opioid receptor (OR) densities in the POM and VTA, we measured the densities of micro, delta, and kappa subtypes in these brain regions in adult male dark-eyed juncos (Junco hyemalis) sampled in spring (singing), summer (singing and breeding), and fall (no singing). Receptor densities in the rostral and caudal portions of the POM were measured separately because these subregions are thought to predominantly influence appetitive and consumatory sexual behaviors, respectively. delta ORs were generally denser than micro or kappa in both parts of the POM and micro ORs were denser than the other subtypes in the VTA. Densities of micro ORs in the POM were higher in the summer than in spring or fall, although this difference was statistically significant only for cPOM (p=0.002). In rPOM, kappa OR densities tended to be higher in spring and summer than fall, although this pattern did not reach statistical significance (p=0.057). In contrast, kappa OR densities were lowest in the VTA during the summer compared to spring and fall, although this pattern did not reach statistical significance, either (p=0.094). Results obtained for cPOM micro ORs suggest a heightened reward potential for sexual behavior during the breeding season.


Subject(s)
Preoptic Area/metabolism , Receptors, Opioid/metabolism , Seasons , Songbirds/metabolism , Ventral Tegmental Area/metabolism , Analysis of Variance , Animals , Autoradiography , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...