Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915485

ABSTRACT

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-ß-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that fibroblast activation is supported by metabolic reprogramming, including the upregulation of the de novo synthesis of glycine, the most abundant amino acid found in collagen protein. How fibroblast metabolic reprogramming is regulated downstream of TGF-ß is incompletely understood. We and others have shown that TGF-ß-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote increased expression of the enzymes required for de novo glycine synthesis; however, whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored. Here, we used RNA sequencing to determine how both ATF4 and mTOR regulate gene expression in human lung fibroblasts following TGF-ß. We found that ATF4 primarily regulates enzymes and transporters involved in amino acid homeostasis as well as aminoacyl-tRNA synthetases. mTOR inhibition resulted not only in the loss of ATF4 target gene expression, but also in the reduced expression of glycolytic enzymes and mitochondrial electron transport chain subunits. Analysis of TGF-ß-induced changes in cellular metabolite levels confirmed that ATF4 regulates amino acid homeostasis in lung fibroblasts while mTOR also regulates glycolytic and TCA cycle metabolites. We further analyzed publicly available single cell RNAseq data sets and found increased expression of ATF4 and mTOR metabolic targets in pathologic fibroblast populations from the lungs of IPF patients. Our results provide insight into the mechanisms of metabolic reprogramming in lung fibroblasts and highlight novel ATF4 and mTOR-dependent pathways that may be targeted to inhibit fibrotic processes.

2.
bioRxiv ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37986788

ABSTRACT

A hallmark of Idiopathic Pulmonary Fibrosis is the TGF-ß-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by lung fibroblasts requires de novo synthesis of glycine, the most abundant amino acid in collagen protein. TGF-ß upregulates the expression of the enzymes of the de novo serine/glycine synthesis pathway in lung fibroblasts through mTORC1 and ATF4-dependent transcriptional programs. SHMT2, the final enzyme of the de novo serine/glycine synthesis pathway, transfers a one-carbon unit from serine to tetrahydrofolate (THF), producing glycine and 5,10-methylene-THF (meTHF). meTHF is converted back to THF in the mitochondrial one-carbon (1C) pathway through the sequential actions of MTHFD2 (which converts meTHF to 10-formyl-THF), and either MTHFD1L, which produces formate, or ALDH1L2, which produces CO2. It is unknown how the mitochondrial 1C pathway contributes to glycine biosynthesis or collagen protein production in fibroblasts, or fibrosis in vivo. Here, we demonstrate that TGF-ß induces the expression of MTHFD2, MTHFD1L, and ALDH1L2 in human lung fibroblasts. MTHFD2 expression was required for TGF-ß-induced cellular glycine accumulation and collagen protein production. Combined knockdown of both MTHFD1L and ALDH1L2 also inhibited glycine accumulation and collagen protein production downstream of TGF-ß; however knockdown of either protein alone had no inhibitory effect, suggesting that lung fibroblasts can utilize either enzyme to regenerate THF. Pharmacologic inhibition of MTHFD2 recapitulated the effects of MTHFD2 knockdown in lung fibroblasts and ameliorated fibrotic responses after intratracheal bleomycin instillation in vivo. Our results provide insight into the metabolic requirements of lung fibroblasts and provide support for continued development of MTHFD2 inhibitors for the treatment of IPF and other fibrotic diseases.

3.
PLoS One ; 18(10): e0292990, 2023.
Article in English | MEDLINE | ID: mdl-37844118

ABSTRACT

Obstructive sleep apnea (OSA) is a common breathing disorder that affects a significant portion of the adult population. In addition to causing excessive daytime sleepiness and neurocognitive effects, OSA is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not completely understood. Using exposure to intermittent hypoxia (IH) to mimic OSA, we have recently reported that mice exposed to IH exhibit endothelial cell (EC) activation, which is an early process preceding the development of cardiovascular disease. Although widely used, IH models have several limitations such as the severity of hypoxia, which does not occur in most patients with OSA. Recent studies reported that mice with deletion of hemeoxygenase 2 (Hmox2-/-), which plays a key role in oxygen sensing in the carotid body, exhibit spontaneous apneas during sleep and elevated levels of catecholamines. Here, using RNA-sequencing we investigated the transcriptomic changes in aortic ECs and heart tissue to understand the changes that occur in Hmox2-/- mice. In addition, we evaluated cardiac structure, function, and electrical properties by using echocardiogram and electrocardiogram in these mice. We found that Hmox2-/- mice exhibited aortic EC activation. Transcriptomic analysis in aortic ECs showed differentially expressed genes enriched in blood coagulation, cell adhesion, cellular respiration and cardiac muscle development and contraction. Similarly, transcriptomic analysis in heart tissue showed a differentially expressed gene set enriched in mitochondrial translation, oxidative phosphorylation and cardiac muscle development. Analysis of transcriptomic data from aortic ECs and heart tissue showed loss of Hmox2 gene might have common cellular network footprints on aortic endothelial cells and heart tissue. Echocardiographic evaluation showed that Hmox2-/- mice develop progressive dilated cardiomyopathy and conduction abnormalities compared to Hmox2+/+ mice. In conclusion, we found that Hmox2-/- mice, which spontaneously develop apneas exhibit EC activation and transcriptomic and functional changes consistent with heart failure.


Subject(s)
Cardiomyopathies , Cardiovascular Diseases , Sleep Apnea, Obstructive , Adult , Animals , Humans , Mice , Endothelial Cells/metabolism , Heme Oxygenase (Decyclizing)/genetics , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Muscle Development
4.
Sci Rep ; 12(1): 17167, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229484

ABSTRACT

Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular disease. While intermittent hypoxia (IH) and catecholamine release play an important role in this increased risk, the mechanisms are incompletely understood. We have recently reported that IH causes endothelial cell (EC) activation, an early phenomenon in the development of cardiovascular disease, via IH-induced catecholamine release. Here, we investigated the effects of IH and epinephrine on gene expression in human aortic ECs using RNA-sequencing. We found a significant overlap between IH and epinephrine-induced differentially expressed genes (DEGs) including enrichment in leukocyte migration, cytokine-cytokine receptor interaction, cell adhesion and angiogenesis. Epinephrine caused higher number of DEGs compared to IH. Interestingly, IH when combined with epinephrine had an inhibitory effect on epinephrine-induced gene expression. Combination of IH and epinephrine induced MT1G (Metallothionein 1G), which has been shown to be highly expressed in ECs from parts of aorta (i.e., aortic arch) where atherosclerosis is more likely to occur. In conclusion, epinephrine has a greater effect than IH on EC gene expression in terms of number of genes and their expression level. IH inhibited the epinephrine-induced transcriptional response. Further investigation of the interaction between IH and epinephrine is needed to better understand how OSA causes cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Sleep Apnea, Obstructive , Aorta/metabolism , Cardiovascular Diseases/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Epinephrine/metabolism , Epinephrine/pharmacology , Humans , Hypoxia/metabolism , Metallothionein/metabolism , RNA/metabolism , Receptors, Cytokine/metabolism
5.
Elife ; 112022 07 13.
Article in English | MEDLINE | ID: mdl-35822617

ABSTRACT

Cellular metabolism is a critical regulator of macrophage effector function. Tissue-resident alveolar macrophages (TR-AMs) inhabit a unique niche marked by high oxygen and low glucose. We have recently shown that in contrast to bone marrow-derived macrophages (BMDMs), TR-AMs do not utilize glycolysis and instead predominantly rely on mitochondrial function for their effector response. It is not known how changes in local oxygen concentration that occur during conditions such as acute respiratory distress syndrome (ARDS) might affect TR-AM metabolism and function; however, ARDS is associated with progressive loss of TR-AMs, which correlates with the severity of disease and mortality. Here, we demonstrate that hypoxia robustly stabilizes HIF-1α in TR-AMs to promote a glycolytic phenotype. Hypoxia altered TR-AM metabolite signatures, cytokine production, and decreased their sensitivity to the inhibition of mitochondrial function. By contrast, hypoxia had minimal effects on BMDM metabolism. The effects of hypoxia on TR-AMs were mimicked by FG-4592, a HIF-1α stabilizer. Treatment with FG-4592 decreased TR-AM death and attenuated acute lung injury in mice. These findings reveal the importance of microenvironment in determining macrophage metabolic phenotype and highlight the therapeutic potential in targeting cellular metabolism to improve outcomes in diseases characterized by acute inflammation.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Animals , Cell Survival , Glycolysis , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Macrophages, Alveolar/metabolism , Mice , Oxygen/metabolism
6.
Am J Respir Cell Mol Biol ; 66(6): 682-693, 2022 06.
Article in English | MEDLINE | ID: mdl-35442170

ABSTRACT

Development of acute respiratory distress syndrome (ARDS) in influenza A virus (IAV)-infected mice is associated with inhibition of ATII (alveolar type II) epithelial cell de novo phosphatidylcholine synthesis, and administration of the phosphatidylcholine precursor cytidine 5'-diphosphocholine (CDP-choline) attenuates IAV-induced acute respiratory distress syndrome in mice. We hypothesized inhibition of phosphatidylcholine synthesis would also impact the function of ATII cell mitochondria. To test this hypothesis, adult C57BL/6 mice of both sexes were inoculated intranasally with 10,000 pfu/mouse influenza A/WSN/33 (H1N1). Control mice were mock-infected with virus diluent. Mice were treated with saline vehicle or CDP-choline (100 µg/mouse i.p.) once daily from 1 to 5 days postinoculation (dpi). ATII cells were isolated by a standard lung digestion protocol at 6 dpi for analysis of mitochondrial function. IAV infection increased uptake of the glucose analog fludeoxyglucose F 18 by the lungs and caused a switch from oxidative phosphorylation to aerobic glycolysis as a primary means of ATII cell ATP synthesis by 6 dpi. Infection also induced ATII cell mitochondrial depolarization and shrinkage, upregulation of PGC-1α, decreased cardiolipin content, and reduced expression of mitofusin 1, OPA1, DRP1, complexes I and IV of the electron transport chain, and enzymes involved in cardiolipin synthesis. Daily CDP-choline treatment prevented the declines in oxidative phosphorylation, mitochondrial membrane potential, and cardiolipin synthesis resulting from IAV infection but did not fully reverse the glycolytic shift. CDP-choline also did not prevent the alterations in mitochondrial protein expression resulting from infection. Taken together, our data show ATII cell mitochondrial dysfunction after IAV infection results from impaired de novo phospholipid synthesis, but the glycolytic shift does not.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Respiratory Distress Syndrome , Animals , Cardiolipins , Cytidine Diphosphate Choline , Female , Humans , Influenza A Virus, H1N1 Subtype/physiology , Influenza A virus/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Phosphatidylcholines
7.
Front Physiol ; 12: 701995, 2021.
Article in English | MEDLINE | ID: mdl-34322038

ABSTRACT

Obstructive sleep apnea (OSA) is a common breathing disorder affecting a significant percentage of the adult population. OSA is an independent risk factor for cardiovascular disease (CVD); however, the underlying mechanisms are not completely understood. Since the severity of hypoxia correlates with some of the cardiovascular effects, intermittent hypoxia (IH) is thought to be one of the mechanisms by which OSA may cause CVD. Here, we investigated the effect of IH on endothelial cell (EC) activation, characterized by the expression of inflammatory genes, that is known to play an important role in the pathogenesis of CVD. Exposure of C57BL/6 mice to IH led to aortic EC activation, while in vitro exposure of ECs to IH failed to do so, suggesting that IH does not induce EC activation directly, but indirectly. One of the consequences of IH is activation of the sympathetic nervous system and catecholamine release. We found that exposure of mice to IH caused elevation of circulating levels of catecholamines. Inhibition of the IH-induced increase in catecholamines by pharmacologic inhibition or by adrenalectomy or carotid body ablation prevented the IH-induced EC activation in mice. Supporting a key role for catecholamines, epinephrine alone was sufficient to cause EC activation in vivo and in vitro. Together, these results suggested that IH does not directly induce EC activation, but does so indirectly via release of catecholamines. These results suggest that targeting IH-induced sympathetic nerve activity and catecholamine release may be a potential therapeutic target to attenuate the CV effects of OSA.

8.
Am J Respir Cell Mol Biol ; 63(5): 601-612, 2020 11.
Article in English | MEDLINE | ID: mdl-32668192

ABSTRACT

Idiopathic pulmonary fibrosis is a fatal interstitial lung disease characterized by the TGF-ß (transforming growth factor-ß)-dependent differentiation of lung fibroblasts into myofibroblasts, which leads to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by myofibroblasts requires de novo synthesis of glycine, the most abundant amino acid found in collagen protein. TGF-ß upregulates the expression of the enzymes of the de novo serine-glycine synthesis pathway in lung fibroblasts; however, the transcriptional and signaling regulators of this pathway remain incompletely understood. Here, we demonstrate that TGF-ß promotes accumulation of ATF4 (activating transcription factor 4), which is required for increased expression of the serine-glycine synthesis pathway enzymes in response to TGF-ß. We found that induction of the integrated stress response (ISR) contributes to TGF-ß-induced ATF4 activity; however, the primary driver of ATF4 downstream of TGF-ß is activation of mTORC1 (mTOR Complex 1). TGF-ß activates the PI3K-Akt-mTOR pathway, and inhibition of PI3K prevents activation of downstream signaling and induction of ATF4. Using a panel of mTOR inhibitors, we found that ATF4 activation is dependent on mTORC1, independent of mTORC2. Rapamycin, which incompletely and allosterically inhibits mTORC1, had no effect on TGF-ß-mediated induction of ATF4; however, Rapalink-1, which specifically targets the kinase domain of mTORC1, completely inhibited ATF4 induction and metabolic reprogramming downstream of TGF-ß. Our results provide insight into the mechanisms of metabolic reprogramming in myofibroblasts and clarify contradictory published findings on the role of mTOR inhibition in myofibroblast differentiation.


Subject(s)
Activating Transcription Factor 4/metabolism , Fibroblasts/metabolism , Lung/cytology , Mechanistic Target of Rapamycin Complex 1/metabolism , Transforming Growth Factor beta/pharmacology , Collagen/biosynthesis , Fibroblasts/drug effects , Glycine/metabolism , Glycolysis/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Oxygen Consumption/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Serine/metabolism , Signal Transduction/drug effects , Stress, Physiological , TOR Serine-Threonine Kinases/metabolism
9.
Elife ; 92020 04 07.
Article in English | MEDLINE | ID: mdl-32255424

ABSTRACT

Particulate matter (PM) air pollution causes cardiopulmonary mortality via macrophage-driven lung inflammation; however, the mechanisms are incompletely understood. RNA-sequencing demonstrated Acod1 (Aconitate decarboxylase 1) as one of the top genes induced by PM in macrophages. Acod1 encodes a mitochondrial enzyme that produces itaconate, which has been shown to exert anti-inflammatory effects via NRF2 after LPS. Here, we demonstrate that PM induces Acod1 and itaconate, which reduced mitochondrial respiration via complex II inhibition. Using Acod1-/- mice, we found that Acod1/endogenous itaconate does not affect PM-induced inflammation or NRF2 activation in macrophages in vitro or in vivo. In contrast, exogenous cell permeable itaconate, 4-octyl itaconate (OI) attenuated PM-induced inflammation in macrophages. OI was sufficient to activate NRF2 in macrophages; however, NRF2 was not required for the anti-inflammatory effects of OI. We conclude that the effects of itaconate production on inflammation are stimulus-dependent, and that there are important differences between endogenous and exogenously-applied itaconate.


Air pollution is a major global health problem that causes around 4.2 million deaths each year. Once inhaled, pollution particles can remain in the lungs, where they cause inflammation, tissue damage, and ultimately chronic disease. Macrophages, a population of immune cells in the lungs, are involved in this inflammatory process. Itaconate is a molecule with potential anti-inflammatory effects, produced by mammalian cells including macrophages. Recent studies have shown that a modified form of the molecule, 4-octyl itaconate, reduces inflammation when applied to cells exposed to lipopolysaccharide, a component of infectious bacteria that is, usually, a strong trigger of inflammation. These experiments used the 4-octyl modification to ensure that itaconate could get into the cells. Itaconate's anti-inflammatory action is thought to work by activating a signaling process in cells called the NRF2 pathway. NRF2 is a protein made by 'active' macrophages, that is, macrophages already primed to respond to foreign particles. NRF2 in turn increases production of factors that 'damp down' inflammation, all of which are collectively termed the NRF2 anti-inflammatory pathway. Although macrophages in the lungs are linked with inflammation caused by air pollution, their role ­ and that of itaconate ­ is still not well-understood. Sun et al. therefore wanted to determine if itaconate helps macrophages control pollution-induced inflammation. Initial experiments treated mouse macrophage cells with pollution particles. Analyzing gene activity in these cells showed that exposure to pollution did indeed switch on the Acod1 gene, which encodes the enzyme that makes itaconate. It also turned on genes for other molecules involved in inflammation. Pre-treating macrophages with 4-octyl itaconate before pollution exposure reduced inflammation and also, as expected, turned on the NRF2 pathway. To determine whether cells' own production of itaconate affected lung inflammation, macrophages were isolated from mutant mice lacking Acod1. Comparing these cells, which could not make itaconate, with normal cells revealed that removing itaconate did not change the inflammatory response to pollution. Activity of the NRF2 pathway also remained similar in both types of cells. This showed that itaconate produced by macrophages likely has different effects on lung inflammation from other forms of the compound. These findings represent a step forward in understanding how pollution interacts with immune cells in the lungs. They reveal that the source of anti-inflammatory factors can be just as important in shaping immune responses as the type of factor. These results highlight the need for further, detailed work on the mechanisms underlying pollution-induced disease.


Subject(s)
Carboxy-Lyases/genetics , Inflammation , Macrophages, Alveolar/metabolism , NF-E2-Related Factor 2/genetics , Particulate Matter/administration & dosage , Succinates/metabolism , Animals , Macrophages, Alveolar/drug effects , Mice , Mice, Knockout , Oxygen/metabolism , RNA-Seq , Signal Transduction , Succinates/pharmacology
10.
Virology ; 545: 40-52, 2020 06.
Article in English | MEDLINE | ID: mdl-32308197

ABSTRACT

Alveolar type II (ATII) cells are essential to lung function and a primary site of influenza A virus (IAV) replication. Effects of IAV infection on ATII cell microRNA (miR) expression have not been comprehensively investigated. Infection of C57BL/6 mice with 10,000 or 100 pfu/mouse of IAV A/WSN/33 (H1N1) significantly altered expression of 73 out of 1908 mature murine miRs in ATII cells at 2 days post-infection (d.p.i.) and 253 miRs at 6 d.p.i. miR-155-5p (miR-155) showed the greatest increase in expression within ATII cells at both timepoints and the magnitude of this increase correlated with inoculum size and pulmonary edema severity. Influenza-induced lung injury was attenuated in C57BL/6-congenic miR-155-knockout mice without affecting viral replication. Attenuation of lung injury was dependent on deletion of miR-155 from stromal cells and was recapitulated in ATII cell-specific miR-155-knockout mice. These data suggest that ATII cell miR-155 is a potential therapeutic target for IAV-induced ARDS.


Subject(s)
Alveolar Epithelial Cells/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/mortality , MicroRNAs/genetics , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/mortality , Alveolar Epithelial Cells/virology , Animals , Female , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/metabolism , Influenza, Human/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/virology
11.
Am J Respir Cell Mol Biol ; 62(2): 243-255, 2020 02.
Article in English | MEDLINE | ID: mdl-31469581

ABSTRACT

Macrophage effector function is dynamic in nature and largely dependent on not only the type of immunological challenge but also the tissue-specific environment and developmental origin of a given macrophage population. Recent research has highlighted the importance of glycolytic metabolism in the regulation of effector function as a common feature associated with macrophage activation. Yet, most research has used macrophage cell lines and bone marrow-derived macrophages, which do not account for the diversity of macrophage populations and the role of tissue specificity in macrophage immunometabolism. Tissue-resident alveolar macrophages (TR-AMs) reside in an environment characterized by remarkably low glucose concentrations, making glycolysis-linked immunometabolism an inefficient and unlikely means of immune activation. In this study, we show that TR-AMs rely on oxidative phosphorylation to meet their energy demands and maintain extremely low levels of glycolysis under steady-state conditions. Unlike bone marrow-derived macrophages, TR-AMs did not experience enhanced glycolysis in response to LPS, and glycolytic inhibition had no effect on their proinflammatory cytokine production. Hypoxia-inducible factor 1α stabilization promoted glycolysis in TR-AMs and shifted energy production away from oxidative metabolism at baseline, but it was not sufficient for TR-AMs to mount further increases in glycolysis or enhance immune function in response to LPS. Importantly, we confirmed these findings in an in vivo influenza model in which infiltrating macrophages had significantly higher glycolytic and proinflammatory gene expression than TR-AMs. These findings demonstrate that glycolysis is dispensable for macrophage effector function in TR-AM and highlight the importance of macrophage tissue origin (tissue resident vs. recruited) in immunometabolism.


Subject(s)
Glycolysis/drug effects , Inflammation/metabolism , Macrophage Activation/immunology , Macrophages, Alveolar/drug effects , Animals , Inflammation/genetics , Lipopolysaccharides/pharmacology , Macrophages, Alveolar/metabolism , Oxidative Phosphorylation/drug effects
13.
Cell Metab ; 29(2): 335-347.e5, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30318339

ABSTRACT

Urban particulate matter air pollution induces the release of pro-inflammatory cytokines including interleukin-6 (IL-6) from alveolar macrophages, resulting in an increase in thrombosis. Here, we report that metformin provides protection in this murine model. Treatment of mice with metformin or exposure of murine or human alveolar macrophages to metformin prevented the particulate matter-induced generation of complex III mitochondrial reactive oxygen species, which were necessary for the opening of calcium release-activated channels (CRAC) and release of IL-6. Targeted genetic deletion of electron transport or CRAC channels in alveolar macrophages in mice prevented particulate matter-induced acceleration of arterial thrombosis. These findings suggest metformin as a potential therapy to prevent some of the premature deaths attributable to air pollution exposure worldwide.


Subject(s)
Air Pollution/adverse effects , Lung Diseases/drug therapy , Macrophages, Alveolar/metabolism , Metformin/pharmacology , Mitochondria/metabolism , Particulate Matter/toxicity , Thrombosis/drug therapy , Animals , Cell Line , Cytokines/metabolism , Electron Transport , Humans , Interleukin-6/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/pathology , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism
15.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L83-L92, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28982733

ABSTRACT

Influenza A viruses are highly contagious respiratory pathogens that are responsible for significant morbidity and mortality worldwide on an annual basis. We have shown previously that influenza infection of mice leads to increased ATP and adenosine accumulation in the airway lumen. Moreover, we demonstrated that A1-adenosine receptor activation contributes significantly to influenza-induced acute respiratory distress syndrome (ARDS). However, we found that development of ARDS in influenza-infected mice does not require catabolism of ATP to adenosine by ecto-5'-nucleotidase (CD73). Hence, we hypothesized that increased adenosine generation in response to infection is mediated by tissue nonspecific alkaline phosphatase (TNAP), which is a low-affinity, high-capacity enzyme that catabolizes nucleotides in a nonspecific manner. In the current study, we found that whole lung and BALF TNAP expression and alkaline phosphatase enzymatic activity increased as early as 2 days postinfection (dpi) of C57BL/6 mice with 10,000 pfu/mouse of influenza A/WSN/33 (H1N1). Treatment at 2 and 4 dpi with a highly specific quinolinyl-benzenesulfonamide TNAP inhibitor (TNAPi) significantly reduced whole lung alkaline phosphatase activity at 6 dpi but did not alter TNAP gene or protein expression. TNAPi treatment attenuated hypoxemia, lung dysfunction, histopathology, and pulmonary edema at 6 dpi without impacting viral replication or BALF adenosine. Treatment also improved epithelial barrier function and attenuated cellular and humoral immune responses to influenza infection. These data indicate that TNAP inhibition can attenuate influenza-induced ARDS by reducing inflammation and fluid accumulation within the lung. They also further emphasize the importance of adenosine generation for development of ARDS in influenza-infected mice.


Subject(s)
Adenosine Triphosphate/metabolism , Alkaline Phosphatase/metabolism , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/complications , Pulmonary Edema/etiology , Respiratory Distress Syndrome/etiology , 5'-Nucleotidase/metabolism , Animals , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/virology , Pulmonary Edema/metabolism , Pulmonary Edema/pathology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Virus Replication
16.
Am J Respir Cell Mol Biol ; 58(5): 585-593, 2018 05.
Article in English | MEDLINE | ID: mdl-29019702

ABSTRACT

Organ fibrosis, including idiopathic pulmonary fibrosis, is associated with significant morbidity and mortality. Because currently available therapies have limited effect, there is a need to better understand the mechanisms by which organ fibrosis occurs. We have recently reported that transforming growth factor (TGF)-ß, a key cytokine that promotes fibrogenesis, induces the expression of the enzymes of the de novo serine and glycine synthesis pathway in human lung fibroblasts, and that phosphoglycerate dehydrogenase (PHGDH; the first and rate-limiting enzyme of the pathway) is required to promote collagen protein synthesis downstream of TGF-ß. In this study, we investigated whether inhibition of de novo serine and glycine synthesis attenuates lung fibrosis in vivo. We found that TGF-ß induces mRNA and protein expression of PHGDH in murine fibroblasts. Similarly, intratracheal administration of bleomycin resulted in increased expression of PHGDH in mouse lungs, localized to fibrotic regions. Using a newly developed small molecule inhibitor of PHGDH (NCT-503), we tested whether pharmacologic inhibition of PHGDH could inhibit fibrogenesis both in vitro and in vivo. Treatment of murine and human lung fibroblasts with NCT-503 decreased TGF-ß-induced collagen protein synthesis. Mice treated with the PHGDH inhibitor beginning 7 days after intratracheal instillation of bleomycin had attenuation of lung fibrosis. These results indicate that the de novo serine and glycine synthesis pathway is necessary for TGF-ß-induced collagen synthesis and bleomycin-induced pulmonary fibrosis. PHGDH and other enzymes in the de novo serine and glycine synthesis pathway may be a therapeutic target for treatment of fibrotic diseases, including idiopathic pulmonary fibrosis.


Subject(s)
Airway Remodeling/drug effects , Bleomycin , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Idiopathic Pulmonary Fibrosis/prevention & control , Lung/drug effects , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Animals , Collagen/metabolism , Disease Models, Animal , Fibroblasts/enzymology , Fibroblasts/pathology , Glycine/metabolism , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/pathology , Lung/enzymology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phosphoglycerate Dehydrogenase/metabolism , Serine/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/pharmacology
17.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1160-L1169, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27836900

ABSTRACT

Alveolar type II (ATII) epithelial cells are the primary site of influenza virus replication in the distal lung. Development of acute respiratory distress syndrome in influenza-infected mice correlates with significant alterations in ATII cell function. However, the impact of infection on ATII cell surfactant lipid metabolism has not been explored. C57BL/6 mice were inoculated intranasally with influenza A/WSN/33 (H1N1) virus (10,000 plaque-forming units/mouse) or mock-infected with virus diluent. ATII cells were isolated by a standard lung digestion protocol at 2 and 6 days postinfection. Levels of 77 surfactant lipid-related compounds of known identity in each ATII cell sample were measured by ultra-high-performance liquid chromatography-mass spectrometry. In other mice, bronchoalveolar lavage fluid was collected to measure lipid and protein content using commercial assay kits. Relative to mock-infected animals, ATII cells from influenza-infected mice contained reduced levels of major surfactant phospholipids (phosphatidylcholine, phosphatidylglycerol, and phosphatidylethanolamine) but increased levels of minor phospholipids (phosphatidylserine, phosphatidylinositol, and sphingomyelin), cholesterol, and diacylglycerol. These changes were accompanied by reductions in cytidine 5'-diphosphocholine and 5'-diphosphoethanolamine (liponucleotide precursors for ATII cell phosphatidylcholine and phosphatidylethanolamine synthesis, respectively). ATII cell lamellar bodies were ultrastructurally abnormal after infection. Changes in ATII cell phospholipids were reflected in the composition of bronchoalveolar lavage fluid, which contained reduced amounts of phosphatidylcholine and phosphatidylglycerol but increased amounts of sphingomyelin, cholesterol, and protein. Influenza infection significantly alters ATII cell surfactant lipid metabolism, which may contribute to surfactant dysfunction and development of acute respiratory distress syndrome in influenza-infected mice.


Subject(s)
Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/physiology , Influenza A Virus, H1N1 Subtype/physiology , Lipid Metabolism , Metabolome , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Pulmonary Surfactants/metabolism , Alveolar Epithelial Cells/virology , Animals , Bronchoalveolar Lavage Fluid , Cell Separation , Cholesterol/metabolism , Cytidine Diphosphate Choline , Mice, Inbred C57BL , Phospholipids/metabolism
18.
J Biol Chem ; 291(53): 27239-27251, 2016 12 30.
Article in English | MEDLINE | ID: mdl-27836973

ABSTRACT

TGF-ß promotes excessive collagen deposition in fibrotic diseases such as idiopathic pulmonary fibrosis (IPF). The amino acid composition of collagen is unique due to its high (33%) glycine content. Here, we report that TGF-ß induces expression of glycolytic genes and increases glycolytic flux. TGF-ß also induces the expression of the enzymes of the de novo serine synthesis pathway (phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH)) and de novo glycine synthesis (serine hydroxymethyltransferase 2 (SHMT2)). Studies in fibroblasts with genetic attenuation of PHGDH or SHMT2 and pharmacologic inhibition of PHGDH showed that these enzymes are required for collagen synthesis. Furthermore, metabolic labeling experiments demonstrated carbon from glucose incorporated into collagen. Lungs from humans with IPF demonstrated increased expression of PHGDH and SHMT2. These results indicate that the de novo serine synthesis pathway is necessary for TGF-ß-induced collagen production and suggest that this pathway may be a therapeutic target for treatment of fibrotic diseases including IPF.


Subject(s)
Collagen/metabolism , Fibroblasts/metabolism , Glycine Hydroxymethyltransferase/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Serine/biosynthesis , Transforming Growth Factor beta/pharmacology , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Glycine Hydroxymethyltransferase/genetics , Glycolysis , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Lung/cytology , Lung/drug effects , Lung/metabolism , Phosphoglycerate Dehydrogenase/genetics
19.
Am J Physiol Lung Cell Mol Physiol ; 309(11): L1313-22, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26432867

ABSTRACT

Extracellular nucleotides and nucleosides are important signaling molecules in the lung. Nucleotide and nucleoside concentrations in alveolar lining fluid are controlled by a complex network of surface ectonucleotidases. Previously, we demonstrated that influenza A/WSN/33 (H1N1) virus resulted in increased levels of the nucleotide ATP and the nucleoside adenosine in bronchoalveolar lavage fluid (BALF) of wild-type (WT) C57BL/6 mice. Influenza-induced acute lung injury (ALI) was highly attenuated in A1-adenosine receptor-knockout mice. Because AMP hydrolysis by the ecto-5'-nucleotidase (CD73) plays a central role in and is rate-limiting for generation of adenosine in the normal lung, we hypothesized that ALI would be attenuated in C57BL/6-congenic CD73-knockout (CD73-KO) mice. Infection-induced hypoxemia, bradycardia, viral replication, and bronchoconstriction were moderately increased in CD73-KO mice relative to WT controls. However, postinfection weight loss, pulmonary edema, and parenchymal dysfunction were not altered. Treatment of WT mice with the CD73 inhibitor 5'-(α,ß-methylene) diphosphate (APCP) also had no effect on infection-induced pulmonary edema but modestly attenuated hypoxemia. BALF from CD73-KO and APCP-treated WT mice contained more IL-6 and CXCL-10/IFN-γ-induced protein 10, less CXCL-1/keratinocyte chemoattractant, and fewer neutrophils than BALF from untreated WT controls. BALF from APCP-treated WT mice also contained fewer alveolar macrophages and more transforming growth factor-ß than BALF from untreated WT mice. These results indicate that CD73 is not necessary for development of ALI following influenza A virus infection and suggest that tissue-nonspecific alkaline phosphatase may be responsible for increased adenosine generation in the infected lung. However, they do suggest that CD73 has a previously unrecognized immunomodulatory role in influenza.


Subject(s)
5'-Nucleotidase/metabolism , Acute Lung Injury/enzymology , Acute Lung Injury/immunology , Immunity, Innate , Influenza, Human/immunology , Orthomyxoviridae Infections/enzymology , Orthomyxoviridae Infections/immunology , 5'-Nucleotidase/genetics , Acute Lung Injury/complications , Acute Lung Injury/virology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Alkaline Phosphatase/metabolism , Animals , Bronchoalveolar Lavage Fluid/cytology , Chemokines/metabolism , Compliance , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression Regulation/drug effects , Heart/drug effects , Heart/physiopathology , Humans , Immunity, Innate/drug effects , Influenza A Virus, H1N1 Subtype/immunology , Leukocyte Count , Lung/drug effects , Lung/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/cytology , Neutrophils/drug effects , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/virology , Pulmonary Edema/etiology , Pulmonary Edema/pathology , Pulmonary Edema/physiopathology , Virus Replication/drug effects
20.
Am J Physiol Lung Cell Mol Physiol ; 308(11): L1136-44, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25840995

ABSTRACT

As the eighth leading cause of annual mortality in the USA, influenza A viruses are a major public health concern. In 20% of patients, severe influenza progresses to acute lung injury (ALI). However, pathophysiological mechanisms underlying ALI development are poorly defined. We reported that, unlike wild-type (WT) C57BL/6 controls, influenza A virus-infected mice that are heterozygous for the F508del mutation in the cystic fibrosis transmembrane conductance regulator (HETs) did not develop ALI. This effect was associated with higher IL-6 and alveolar macrophages (AMs) at 6 days postinfection (d.p.i.) in HET bronchoalveolar lavage fluid (BALF). In the present study, we found that HET AMs were an important source of IL-6 at 6 d.p.i. Infection also induced TGF-ß production by HET but not WT mice at 2 d.p.i. TGF-ß neutralization at 2 d.p.i. (TGF-N) significantly reduced BALF IL-6 in HETs at 6 d.p.i. Neither TGF-N nor IL-6 neutralization at 4 d.p.i. (IL-6-N) altered postinfection weight loss or viral replication in either mouse strain. However, both treatments increased influenza A virus-induced hypoxemia, pulmonary edema, and lung dysfunction in HETs to WT levels at 6 d.p.i. TGF-N and IL-6-N did not affect BALF AM and neutrophil numbers but attenuated the CXCL-1/keratinocyte chemokine response in both strains and reduced IFN-γ production in WT mice. Finally, bone marrow transfer experiments showed that HET stromal and myeloid cells are both required for protection from ALI in HETs. These findings indicate that TGF-ß-dependent production of IL-6 by AMs later in infection prevents ALI development in influenza A virus-infected HET mice.


Subject(s)
Acute Lung Injury/virology , Influenza A virus/immunology , Interleukin-6/physiology , Orthomyxoviridae Infections/immunology , Transforming Growth Factor beta/physiology , Acute Lung Injury/immunology , Animals , Bronchoalveolar Lavage Fluid , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Immunity, Innate , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred CFTR , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...