Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36909935

ABSTRACT

Growing evidence suggests that phase-locked deep brain stimulation (DBS) can effectively regulate abnormal brain connectivity in neurological and psychiatric disorders. This letter therefore presents a low-power SoC with both neural connectivity extraction and phase-locked DBS capabilities. A 16-channel low-noise analog front-end (AFE) records local field potentials (LFPs) from multiple brain regions with precise gain matching. A novel low-complexity phase estimator and neural connectivity processor subsequently enable energy-efficient, yet accurate measurement of the instantaneous phase and cross-regional synchrony measures. Through flexible combination of neural biomarkers such as phase synchrony and spectral energy, a four-channel charge-balanced neurostimulator is triggered to treat various pathological brain conditions. Fabricated in 65-nm CMOS, the SoC occupies a silicon area of 2.24 mm2 and consumes 60 µW, achieving over 60% power saving in neural connectivity extraction compared to the state-of-the-art. Extensive in-vivo measurements demonstrate multi-channel LFP recording, real-time extraction of phase and neural connectivity measures, and phase-locked stimulation in rats.

2.
J Neural Eng ; 18(4)2021 06 17.
Article in English | MEDLINE | ID: mdl-34010815

ABSTRACT

Objective.Brain functions such as perception, motor control, learning, and memory arise from the coordinated activity of neuronal assemblies distributed across multiple brain regions. While major progress has been made in understanding the function of individual neurons, circuit interactions remain poorly understood. A fundamental obstacle to deciphering circuit interactions is the limited availability of research tools to observe and manipulate the activity of large, distributed neuronal populations in humans. Here we describe the development, validation, and dissemination of flexible, high-resolution, thin-film (TF) electrodes for recording neural activity in animals and humans.Approach.We leveraged standard flexible printed-circuit manufacturing processes to build high-resolution TF electrode arrays. We used biocompatible materials to form the substrate (liquid crystal polymer; LCP), metals (Au, PtIr, and Pd), molding (medical-grade silicone), and 3D-printed housing (nylon). We designed a custom, miniaturized, digitizing headstage to reduce the number of cables required to connect to the acquisition system and reduce the distance between the electrodes and the amplifiers. A custom mechanical system enabled the electrodes and headstages to be pre-assembled prior to sterilization, minimizing the setup time required in the operating room. PtIr electrode coatings lowered impedance and enabled stimulation. High-volume, commercial manufacturing enables cost-effective production of LCP-TF electrodes in large quantities.Main Results. Our LCP-TF arrays achieve 25× higher electrode density, 20× higher channel count, and 11× reduced stiffness than conventional clinical electrodes. We validated our LCP-TF electrodes in multiple human intraoperative recording sessions and have disseminated this technology to >10 research groups. Using these arrays, we have observed high-frequency neural activity with sub-millimeter resolution.Significance.Our LCP-TF electrodes will advance human neuroscience research and improve clinical care by enabling broad access to transformative, high-resolution electrode arrays.


Subject(s)
Biocompatible Materials , Brain , Animals , Electric Impedance , Electrodes , Electrodes, Implanted , Humans , Neurons
3.
Sci Transl Med ; 12(538)2020 04 08.
Article in English | MEDLINE | ID: mdl-32269166

ABSTRACT

Long-lasting, high-resolution neural interfaces that are ultrathin and flexible are essential for precise brain mapping and high-performance neuroprosthetic systems. Scaling to sample thousands of sites across large brain regions requires integrating powered electronics to multiplex many electrodes to a few external wires. However, existing multiplexed electrode arrays rely on encapsulation strategies that have limited implant lifetimes. Here, we developed a flexible, multiplexed electrode array, called "Neural Matrix," that provides stable in vivo neural recordings in rodents and nonhuman primates. Neural Matrix lasts over a year and samples a centimeter-scale brain region using over a thousand channels. The long-lasting encapsulation (projected to last at least 6 years), scalable device design, and iterative in vivo optimization described here are essential components to overcoming current hurdles facing next-generation neural technologies.


Subject(s)
Brain Mapping , Rodentia , Animals , Brain , Electrodes, Implanted , Microelectrodes , Primates
4.
J Neural Eng ; 15(6): 066024, 2018 12.
Article in English | MEDLINE | ID: mdl-30246690

ABSTRACT

OBJECTIVE: The clinical use of microsignals recorded over broad cortical regions is largely limited by the chronic reliability of the implanted interfaces. APPROACH: We evaluated the chronic reliability of novel 61-channel micro-electrocorticographic (µECoG) arrays in rats chronically implanted for over one year and using accelerated aging. Devices were encapsulated with polyimide (PI) or liquid crystal polymer (LCP), and fabricated using commercial manufacturing processes. In vitro failure modes and predicted lifetimes were determined from accelerated soak testing. Successful designs were implanted epidurally over the rodent auditory cortex. Trends in baseline signal level, evoked responses and decoding performance were reported for over one year of implantation. MAIN RESULTS: Devices fabricated with LCP consistently had longer in vitro lifetimes than PI encapsulation. Our accelerated aging results predicted device integrity beyond 3.4 years. Five implanted arrays showed stable performance over the entire implantation period (247-435 d). Our regression analysis showed that impedance predicted signal quality and information content only in the first 31 d of recordings and had little predictive value in the chronic phase (>31 d). In the chronic phase, site impedances slightly decreased yet decoding performance became statistically uncorrelated with impedance. We also employed an improved statistical model of spatial variation to measure sensitivity to locally varying fields, which is typically concealed in standard signal power calculations. SIGNIFICANCE: These findings show that µECoG arrays can reliably perform in chronic applications in vivo for over one year, which facilitates the development of a high-density, clinically viable interface.


Subject(s)
Electrocorticography/methods , Polymers , Acoustic Stimulation , Algorithms , Animals , Auditory Cortex , Brain-Computer Interfaces , Electric Impedance , Electrodes, Implanted , Epidural Space , Female , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Signal-To-Noise Ratio
5.
J Neural Eng ; 13(2): 026030-26030, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26975462

ABSTRACT

OBJECTIVE: Micro-electrocorticography (µECoG) offers a minimally invasive neural interface with high spatial resolution over large areas of cortex. However, electrode arrays with many contacts that are individually wired to external recording systems are cumbersome and make recordings in freely behaving rodents challenging. We report a novel high-density 60-electrode system for µECoG recording in freely moving rats. APPROACH: Multiplexed headstages overcome the problem of wiring complexity by combining signals from many electrodes to a smaller number of connections. We have developed a low-cost, multiplexed recording system with 60 contacts at 406 µm spacing. We characterized the quality of the electrode signals using multiple metrics that tracked spatial variation, evoked-response detectability, and decoding value. Performance of the system was validated both in anesthetized animals and freely moving awake animals. MAIN RESULTS: We recorded µECoG signals over the primary auditory cortex, measuring responses to acoustic stimuli across all channels. Single-trial responses had high signal-to-noise ratios (SNR) (up to 25 dB under anesthesia), and were used to rapidly measure network topography within ∼10 s by constructing all single-channel receptive fields in parallel. We characterized evoked potential amplitudes and spatial correlations across the array in the anesthetized and awake animals. Recording quality in awake animals was stable for at least 30 days. Finally, we used these responses to accurately decode auditory stimuli on single trials. SIGNIFICANCE: This study introduces (1) a µECoG recording system based on practical hardware design and (2) a rigorous analytical method for characterizing the signal characteristics of µECoG electrode arrays. This methodology can be applied to evaluate the fidelity and lifetime of any µECoG electrode array. Our µECoG-based recording system is accessible and will be useful for studies of perception and decision-making in rodents, particularly over the entire time course of behavioral training and learning.


Subject(s)
Electrocorticography/economics , Electrocorticography/methods , Electrodes, Implanted/economics , Locomotion/physiology , Animals , Male , Microelectrodes/economics , Movement/physiology , Rats , Rats, Sprague-Dawley
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 4503-4506, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28269278

ABSTRACT

Micro-electrocorticographic (µECοG) electrode arrays provide a minimally invasive, high-resolution neural interface with broad cortical coverage. Previously, we fabricated µECoG arrays at a lower cost than commercially available devices using low-cost industrial processes [1], [2]. Here, we report the in vitro electrical performance of five µECoG designs undergoing an accelerated aging protocol. The impedance and yield of the µECoG arrays were tracked over time. The equivalent lifetime at 37°C depended on the manufacturer and material stack-up, and ranged between 30 and greater than 760 days (ongoing). The main failure modes of these devices were delamination at the site of the electrode contact and broken traces due to metal dissolution. Based on these in vitro results, we offer several recommendations for µECoG designs suitable for chronic implantation.


Subject(s)
Electrocorticography/instrumentation , Electrodes, Implanted/standards , Microelectrodes/standards , Electric Impedance , Quality Improvement
7.
Article in English | MEDLINE | ID: mdl-25570162

ABSTRACT

While mammography remains the gold standard for breast cancer screening, additional adjunctive tools for early detection of breast cancer are needed especially for young women, women with dense breast tissue and those at increased risk due to genetic factors. These patient populations, along with those populations for whom mammography is not readily available, require alternative technologies capable of effectively detecting breast cancer. One such adjunctive modality for breast cancer detection is Electrical Impedance Tomography (EIT). It is a non-invasive technique that measures tissue conductivity by injecting a small current through a surface electrode while measuring electrode voltage(s). The surface measurements are then used to reconstruct a conductivity mapping of the tissue. The difference in conductivities between healthy tissue and that of carcinoma enable EIT to detect cancer. Electrical Impedance Tomography does not subject the patient to ionizing radiation, and offers significant potential for detecting very small tumors in early stages of development at a low cost. While prior systems have demonstrated success using EIT for breast cancer detection, the resolution of the reconstructed image was limited by the spatial resolution of the sensing electrode array. Here, we report the use of higher density (3mm spacing) flexible micro-electrode arrays to obtain tissue impedance maps. Accurate EIT reconstruction is highly dependent on the spatial resolution and fidelity of the surface measurements. High-density, flexible arrays that conform to the breast surface can offer great potential in reconstructing higher resolution conductivity maps than have been previously achieved.


Subject(s)
Breast Neoplasms/diagnosis , Early Detection of Cancer/methods , Tomography/methods , Electric Impedance , Electrodes , Female , Humans , Mammography/methods , Phantoms, Imaging
8.
IEEE Trans Biomed Eng ; 59(6): 1758-69, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22510941

ABSTRACT

The electrical behavior of the Xenopus laevis nerve fibers was studied when combined electrical (cuff electrodes) and optical (infrared laser, low power sub-5 mW) stimulations are applied. Assuming that the main effect of the laser irradiation on the nerve tissue is the localized temperature increase, this paper analyzes and gives new insights into the function of the combined thermoelectric stimulation on both excitation and blocking of the nerve action potentials (AP). The calculations involve a finite-element model (COMSOL) to represent the electrical properties of the nerve and cuff. Electric-field distribution along the nerve was computed for the given stimulation current profile and imported into a NEURON model, which was built to simulate the electrical behavior of myelinated nerve fiber under extracellular stimulation. The main result of this study of combined thermoelectric stimulation showed that local temperature increase, for the given electric field, can create a transient block of both the generation and propagation of the APs. Some preliminary experimental data in support of this conclusion are also shown.


Subject(s)
Action Potentials/physiology , Electric Stimulation/methods , Hot Temperature , Models, Neurological , Nerve Block/methods , Neural Conduction/physiology , Sciatic Nerve/physiology , Animals , Computer Simulation , Xenopus laevis
9.
Article in English | MEDLINE | ID: mdl-22255560

ABSTRACT

Artificial electrical stimulation of the peripheral nervous system is an established therapy for several pathologies and motor impairments. Therapeutic outcomes can be improved with targeted patterns of neural activation, but the required signal amplitudes to achieve this response exceed the limits for safe stimulation. This can lead to electrode corrosion and tissue damage. In this paper, we present a novel approach to pulse shape design based on the properties of the electrode-electrolyte interface. We aim to improve electrode stability at higher voltages by exploiting the potential-independent mechanisms of charge injection. We identified signal parameters associated with capacitive current flow at the platinum interface and incorporated these features into the design of cathodal pulse shapes. A pulse shape comprising 4 high-frequency 'capacitive' harmonics demonstrated a 40 fold performance benefit compared to a conventional square pulse, but irreversible reactions could not be completely avoided during current flow. However, the enhanced electrode stability with the 'capacitive' pulse shapes suggests further optimization of pulse designs according to a surface 'stability function' might allow for safe stimulation with greater electrode voltages.


Subject(s)
Electric Stimulation Therapy/instrumentation , Electric Stimulation/instrumentation , Electrodes, Implanted , Platinum/chemistry , Computer-Aided Design , Electric Capacitance , Electric Conductivity , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...