Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nature ; 490(7421): 517-21, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23099406

ABSTRACT

When external stresses in a system--physical, social or virtual--are relieved through impulsive events, it is natural to focus on the attributes of these avalanches. However, during the quiescent periods between them, stresses may be relieved through competing processes, such as slowly flowing water between earthquakes or thermally activated dislocation flow between plastic bursts in crystals. Such smooth responses can in turn have marked effects on the avalanche properties. Here we report an experimental investigation of slowly compressed nickel microcrystals, covering three orders of magnitude in nominal strain rate, in which we observe unconventional quasi-periodic avalanche bursts and higher critical exponents as the strain rate is decreased. Our experiments are faithfully reproduced by analytic and computational dislocation avalanche modelling that we have extended to incorporate dislocation relaxation, revealing the emergence of the self-organized avalanche oscillator: a novel critical state exhibiting oscillatory approaches towards a depinning critical point. This theory suggests that whenever avalanches compete with slow relaxation--in settings ranging from crystal microplasticity to earthquakes--dynamical quasi-periodic scale invariance ought to emerge.

2.
Nat Mater ; 9(9): 750-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20676087

ABSTRACT

Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute-dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method. An analytic model for the strength, or stress to move a dislocation, owing to the random field of solutes, is then presented. The theory, which has no adjustable parameters and is extendable to other metallic alloys, predicts both the energy barriers to dislocation motion and the zero-temperature flow stress, allowing for predictions of finite-temperature flow stresses. Quantitative comparisons with experimental flow stresses at temperature T=78 K are made for Al-X alloys (X=Mg, Si, Cu, Cr) and good agreement is obtained.

SELECTION OF CITATIONS
SEARCH DETAIL