Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(10): 105136, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37543367

ABSTRACT

Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC), and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro, limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in a stable form, independent of co-chaperones. chTapasin can bind the human HLA-B∗37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved ß2m epitope on HLA-B∗37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B∗37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.


Subject(s)
Antigen Presentation , Chickens , HLA-B Antigens , Membrane Transport Proteins , Molecular Chaperones , Animals , Humans , HLA-B Antigens/metabolism , Immunoglobulins/metabolism , Membrane Transport Proteins/metabolism , Molecular Chaperones/metabolism , Peptides/metabolism , Recombinant Proteins/metabolism , Epitopes/metabolism , Protein Engineering
2.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37425753

ABSTRACT

Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC) and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro , limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in stable form, independently of co-chaperones. chTapasin can bind the human HLA-B * 37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved ß 2 m epitope on HLA-B * 37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B * 37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for future protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.

3.
Proc Natl Acad Sci U S A ; 120(25): e2304055120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37310998

ABSTRACT

The polymorphic nature and intrinsic instability of class I major histocompatibility complex (MHC-I) and MHC-like molecules loaded with suboptimal peptides, metabolites, or glycolipids presents a fundamental challenge for identifying disease-relevant antigens and antigen-specific T cell receptors (TCRs), hindering the development of autologous therapeutics. Here, we leverage the positive allosteric coupling between the peptide and light chain (ß2 microglobulin, ß2m) subunits for binding to the MHC-I heavy chain (HC) through an engineered disulfide bond bridging conserved epitopes across the HC/ß2m interface, to generate conformationally stable, peptide-receptive molecules named "open MHC-I." Biophysical characterization shows that open MHC-I molecules are properly folded protein complexes of enhanced thermal stability compared to the wild type when loaded with low- to moderate-affinity peptides. Using solution NMR, we characterize the effects of the disulfide bond on the conformation and dynamics of the MHC-I structure, ranging from local changes in ß2m-interacting sites of the peptide-binding groove to long-range effects on the α2-1 helix and α3 domain. The interchain disulfide bond stabilizes MHC-I molecules in an open conformation to promote peptide exchange across multiple human leukocyte antigen (HLA) allotypes, covering representatives from five HLA-A supertypes, six HLA-B supertypes, and oligomorphic HLA-Ib molecules. Our structure-guided design, combined with conditional ß-peptide ligands, provides a universal platform to generate ready-to-load MHC-I systems of enhanced stability, enabling a range of approaches to screen antigenic epitope libraries and probe polyclonal TCR repertoires covering highly polymorphic HLA-I allotypes, as well as oligomorphic nonclassical molecules.


Subject(s)
Histocompatibility Antigens Class II , Histocompatibility Antigens , Humans , Peptides/genetics , Major Histocompatibility Complex , Epitopes , Disulfides
4.
bioRxiv ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36993702

ABSTRACT

The polymorphic nature and intrinsic instability of class I major histocompatibility complex (MHC-I) and MHC-like molecules loaded with suboptimal peptides, metabolites, or glycolipids presents a fundamental challenge for identifying disease-relevant antigens and antigen-specific T cell receptors (TCRs), hindering the development of autologous therapeutics. Here, we leverage the positive allosteric coupling between the peptide and light chain (ß 2 microglobulin, ß 2 m) subunits for binding to the MHC-I heavy chain (HC) through an engineered disulfide bond bridging conserved epitopes across the HC/ß 2 m interface, to generate conformationally stable, open MHC-I molecules. Biophysical characterization shows that open MHC-I molecules are properly folded protein complexes of enhanced thermal stability compared to the wild type, when loaded with low- to intermediate-affinity peptides. Using solution NMR, we characterize the effects of the disulfide bond on the conformation and dynamics of the MHC-I structure, ranging from local changes in ß 2 m interacting sites of the peptide binding groove to long-range effects on the α 2-1 helix and α 3 domain. The interchain disulfide bond stabilizes empty MHC-I molecules in a peptide-receptive, open conformation to promote peptide exchange across multiple human leucocyte antigen (HLA) allotypes, covering representatives from five HLA-A, six HLA-B supertypes, and oligomorphic HLA-Ib molecules. Our structural design, combined with conditional ß-peptide ligands, provides a universal platform for generating ready-to-load MHC-I systems of enhanced stability, enabling a range of approaches to screen antigenic epitope libraries and probe polyclonal TCR repertoires in the context of highly polymorphic HLA-I allotypes, as well as oligomorphic nonclassical molecules. Significance Statement: We outline a structure-guided approach for generating conformationally stable, open MHC-I molecules with enhanced ligand exchange kinetics spanning five HLA-A, all HLA-B supertypes, and oligomorphic HLA-Ib allotypes. We present direct evidence of positive allosteric cooperativity between peptide binding and ß 2 m association with the heavy chain by solution NMR and HDX-MS spectroscopy. We demonstrate that covalently linked ß 2 m serves as a conformational chaperone to stabilize empty MHC-I molecules in a peptide-receptive state, by inducing an open conformation and preventing intrinsically unstable heterodimers from irreversible aggregation. Our study provides structural and biophysical insights into the conformational properties of MHC-I ternary complexes, which can be further applied to improve the design of ultra-stable, universal ligand exchange systems in a pan-HLA allelic setting.

5.
BMC Geriatr ; 23(1): 110, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36823564

ABSTRACT

BACKGROUND: The coronavirus pandemic has exacerbated barriers to accessing face-to-face care. Consequently, the potential for digital health technologies (DHTs) to address unmet needs has gained traction. DHTs may circumvent several barriers to healthy independent living, resulting in both socioeconomic and clinical benefits. However, previous studies have demonstrated these benefits may be disproportionately realised among younger populations while excluding older people. METHODS: We performed a prospective survey using the One Poll market research platform among 2000 adults from the United Kingdom. To mitigate against self-selection bias, participants were not informed of the topic of the survey until they had completed recruitment. We compared willingness to use and historical use of health-apps, in addition to recommendations to use health-apps from healthcare professionals; comparing outcomes across all age groups, including a reference group (n = 222) of those aged 18-24. Outcomes were analysed using multivariate logistic regression and reported as odds ratios (OR) with respondent age, ethnicity, gender, and location as covariates. RESULTS: Willingness to use health-apps decreased significantly with age, reaching a minimum (OR = 0.39) among those aged 65 and over compared to the reference group of 18-24 year olds. Despite this, more than 52% of those aged 65 and over were willing to use health-apps. Functions and features most cited as useful by older populations included symptom self-monitoring and surgery recovery assistance. The likelihood of never having used a health-app also increased consistently with age, reaching a maximum among those aged 65 and over (OR = 18.3). Finally, the likelihood of being recommended health-apps by a healthcare professional decreased significantly with age, (OR = 0.09) for those aged 65 and over. In absolute terms, 33.8% of those aged 18-24, and 3.9% of those aged 65 and over were recommended health-apps by their healthcare professionals. CONCLUSION: Although absolute utilisation of health-apps decreases with age, the findings of this study suggest that the gap between those willing to use health-apps, and those being recommended health-apps by healthcare professionals increases with age. Given the increasing availability of evidence-based health-apps designed for older populations, this may result in entirely avoidable unmet needs, suggesting that more should be done by healthcare professionals to recommend health-apps to older persons who are generally positive about their use. This may result in considerable improvements in healthy and independent ageing.


Subject(s)
Mobile Applications , Telemedicine , Humans , Aged , Aged, 80 and over , Prospective Studies , Delivery of Health Care , Surveys and Questionnaires , United Kingdom/epidemiology , Telemedicine/methods
6.
Nat Commun ; 13(1): 5470, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115831

ABSTRACT

Loading of MHC-I molecules with peptide by the catalytic chaperone tapasin in the peptide loading complex plays a critical role in antigen presentation and immune recognition. Mechanistic insight has been hampered by the lack of detailed structural information concerning tapasin-MHC-I. We present here crystal structures of human tapasin complexed with the MHC-I molecule HLA-B*44:05, and with each of two anti-tapasin antibodies. The tapasin-stabilized peptide-receptive state of HLA-B*44:05 is characterized by distortion of the peptide binding groove and destabilization of the ß2-microglobulin interaction, leading to release of peptide. Movements of the membrane proximal Ig-like domains of tapasin, HLA-B*44:05, and ß2-microglobulin accompany the transition to a peptide-receptive state. Together this ensemble of crystal structures provides insights into a distinct mechanism of tapasin-mediated peptide exchange.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I , HLA-B Antigens , Histocompatibility Antigens Class I/metabolism , Humans , Immunoglobulins/metabolism , Peptides/chemistry , Protein Binding
7.
PLoS One ; 14(12): e0226503, 2019.
Article in English | MEDLINE | ID: mdl-31856262

ABSTRACT

We use an interactive story design in which participants read short stories and make two consecutive plot choices about whether protagonists commit low- or high-violence actions. Our study has four main findings. 1) People who choose high violence report greater satisfaction with the story, while those switching to or staying with no violence show lower satisfaction. 2) However, when participants encounter these stories without choices, they reliably rate higher-violence stories as less satisfying than lower-violence stories. 3) Regret seems to account for the low satisfaction of those who choose or switch to low violence. 4) There is a large segment of people (up to 66%) who can be persuaded by different story contexts (genre, perspective) to choose extreme violence in interactive fiction and as a consequence of their choice feel satisfaction. We hypothesize that people who opt for high violence enjoy the story as a result of their choice. Overall, we suggest that choosing violence serves as a gateway for enjoyment by creating an aesthetic zone of control detached from morality.


Subject(s)
Choice Behavior , Narration , Pleasure , Violence/psychology , Adult , Female , Fictional Works as Topic , Humans , Male , Sex Factors
8.
PLoS One ; 6(7): e14823, 2011.
Article in English | MEDLINE | ID: mdl-21750695

ABSTRACT

Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.


Subject(s)
Adaptation, Physiological/physiology , Ecosystem , Oryza/physiology , Symbiosis/physiology , Adaptation, Physiological/drug effects , Biomass , Climate Change , Cold Temperature , Droughts , Fungi/physiology , Fusarium/physiology , Host-Pathogen Interactions , Oryza/metabolism , Oryza/microbiology , Reactive Nitrogen Species/metabolism , Salinity , Seedlings/metabolism , Seedlings/microbiology , Seedlings/physiology , Sodium Chloride/pharmacology , Symbiosis/drug effects , Water/pharmacology
9.
Plant Physiol ; 139(1): 192-203, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16126863

ABSTRACT

The aboveground body of higher plants has a modular structure of repeating units, or phytomers. As such, the position, size, and shape of the individual phytomer dictate the plant architecture. The Arabidopsis (Arabidopsis thaliana) ERECTA (ER) gene regulates the inflorescence architecture by affecting elongation of the internode and pedicels, as well as the shape of lateral organs. A large-scale activation-tagging genetic screen was conducted in Arabidopsis to identify novel genes and pathways that interact with the ER locus. A dominant mutant, super1-D, was isolated as a nearly complete suppressor of a partial loss-of-function allele er-103. We found that SUPER1 encodes YUCCA5, a novel member of the YUCCA family of flavin monooxygenases. The activation tagging of YUCCA5 conferred increased levels of free indole acetic acid, increased auxin response, and mild phenotypic characteristics of auxin overproducers, such as elongated hypocotyls, epinastic cotyledons, and narrow leaves. Both genetic and cellular analyses indicate that auxin and the ER pathway regulate cell division and cell expansion in a largely independent but overlapping manner during elaboration of inflorescence architecture.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flowers/metabolism , Indoleacetic Acids/metabolism , Oxygenases/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Amino Acid Sequence , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Enlargement , Flowers/anatomy & histology , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Hypocotyl/cytology , Hypocotyl/metabolism , Molecular Sequence Data , Mutation , Oxygenases/genetics , Plant Roots/metabolism , Seedlings/metabolism , Sequence Homology, Amino Acid , Signal Transduction
10.
Development ; 129(13): 3207-17, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12070095

ABSTRACT

Almost all aerial parts of plants are continuously generated at the shoot apical meristem (SAM). To maintain a steady pool of undifferentiated cells in the SAM while continuously generating new organs, it is necessary to balance the rate of cell division with the rate of entrance into differentiation pathways. In the Arabidopsis meristem, SHOOT MERISTEMLESS (STM) and WUSCHEL (WUS) are necessary to keep cells undifferentiated and dividing. Here, we tested whether ectopic STM and WUS functions are sufficient to revert differentiation and activate cell division in differentiating tissues. Ectopic STM and WUS functions interacted non-additively and activated a subset of meristem functions, including cell division, CLAVATA1 expression and organogenesis, but not correct phyllotaxy or meristem self-maintenance. Our results suggest that WUS produces a non-cell autonomous signal that activates cell division in combination with STM and that combined WUS/STM functions can initiate the progression from stem cells to organ initiation.


Subject(s)
Arabidopsis Proteins , Arabidopsis/genetics , Homeodomain Proteins/genetics , Meristem/genetics , Plant Proteins/genetics , Arabidopsis/drug effects , Base Sequence , Cell Differentiation/genetics , Cell Division/genetics , Dexamethasone/pharmacology , Gene Expression Regulation, Plant/drug effects , Homeodomain Proteins/drug effects , Homeodomain Proteins/metabolism , Molecular Sequence Data , Mutation , Plant Proteins/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Recombinant Proteins/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...